15boehler commited on
Commit
e0d50ac
1 Parent(s): d6e6c55

Create README.md (#2)

Browse files

- Create README.md (50cf5552d7e7770923acd1a2ff1eab26f3f75991)

Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - finetuned
6
+ inference:
7
+ parameters:
8
+ temperature: 0.7
9
+ ---
10
+
11
+ # Model Card for Mistral-7B-Instruct-v0.1
12
+
13
+ The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets.
14
+
15
+ For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
16
+
17
+ ## Instruction format
18
+
19
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
20
+
21
+ E.g.
22
+ ```
23
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
24
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
25
+ "[INST] Do you have mayonnaise recipes? [/INST]"
26
+ ```
27
+
28
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
29
+
30
+ ```python
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+
33
+ device = "cuda" # the device to load the model onto
34
+
35
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
36
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
37
+
38
+ messages = [
39
+ {"role": "user", "content": "What is your favourite condiment?"},
40
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
41
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
42
+ ]
43
+
44
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
45
+
46
+ model_inputs = encodeds.to(device)
47
+ model.to(device)
48
+
49
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
50
+ decoded = tokenizer.batch_decode(generated_ids)
51
+ print(decoded[0])
52
+ ```
53
+
54
+ ## Model Architecture
55
+ This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
56
+ - Grouped-Query Attention
57
+ - Sliding-Window Attention
58
+ - Byte-fallback BPE tokenizer
59
+
60
+ ## Troubleshooting
61
+ - If you see the following error:
62
+ ```
63
+ Traceback (most recent call last):
64
+ File "", line 1, in
65
+ File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
66
+ config, kwargs = AutoConfig.from_pretrained(
67
+ File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
68
+ config_class = CONFIG_MAPPING[config_dict["model_type"]]
69
+ File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
70
+ raise KeyError(key)
71
+ KeyError: 'mistral'
72
+ ```
73
+
74
+ Installing transformers from source should solve the issue
75
+ pip install git+https://github.com/huggingface/transformers
76
+
77
+ This should not be required after transformers-v4.33.4.
78
+
79
+ ## Limitations
80
+
81
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
82
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
83
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.