Safetensors
llama
File size: 4,588 Bytes
2d7cdbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8794a99
2d7cdbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
---

<div align="center">

<picture> 
  <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="120px">
</picture>

</div>

<p align="center">
  <a href="https://github.com/01-ai">πŸ™ GitHub</a> β€’
  <a href="https://discord.gg/hYUwWddeAu">πŸ‘Ύ Discord</a> β€’
  <a href="https://twitter.com/01ai_yi">🐀 Twitter</a> β€’
  <a href="https://github.com/01-ai/Yi-1.5/issues/2">πŸ’¬ WeChat</a> 
  <br/>
  <a href="https://arxiv.org/abs/2403.04652">πŸ“ Paper</a> β€’
  <a href="https://01-ai.github.io/">πŸ’ͺ Tech Blog</a> β€’
  <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">πŸ™Œ FAQ</a> β€’
  <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">πŸ“— Learning Hub</a>
</p>

# Intro

Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters. 

Key features:
- Excelling in long-context understanding with a maximum context length of 128K tokens.
- Supporting 52 major programming languages, including popular ones such as Java, Python, JavaScript, and C++.

For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).

<p align="left"> 
  <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/demo1.gif?raw=true" alt="demo1" width="500"/> 
</p>

# Models

| Name               | Type | Download                                                                                                                                          |
|--------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Yi-Coder-9B-Chat   | Chat | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B-Chat) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B-Chat) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B-Chat)                   |
| Yi-Coder-1.5B-Chat | Chat | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B-Chat) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B-Chat) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B-Chat)                   |
| Yi-Coder-9B        | Base | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B/)                   |
| Yi-Coder-1.5B      | Base | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B)                   |
|                    | 

# Benchmarks

As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.

<p align="left"> 
  <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/bench1.webp?raw=true" alt="bench1" width="1000"/> 
</p>

# Quick Start

You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" # the device to load the model onto
model_path = "01-ai/Yi-Coder-9B-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()

prompt = "Write a quick sort algorithm."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=1024,
    eos_token_id=tokenizer.eos_token_id  
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

For getting up and running with Yi-Coder series models quickly, see [Yi-Coder README](https://github.com/01-ai/Yi-Coder).