File size: 5,171 Bytes
d4bb566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{
  "best_metric": 0.827712178226716,
  "best_model_checkpoint": "DocLayNet/lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1/checkpoint-500",
  "epoch": 0.6396588486140725,
  "eval_steps": 100,
  "global_step": 1200,
  "is_hyper_param_search": false,
  "is_local_process_zero": true,
  "is_world_process_zero": true,
  "log_history": [
    {
      "epoch": 0.05,
      "eval_accuracy": 0.687484404164213,
      "eval_f1": 0.687484404164213,
      "eval_loss": 0.11619879305362701,
      "eval_precision": 0.687484404164213,
      "eval_recall": 0.687484404164213,
      "eval_runtime": 114.5058,
      "eval_samples_per_second": 14.034,
      "eval_steps_per_second": 0.882,
      "step": 100
    },
    {
      "epoch": 0.11,
      "eval_accuracy": 0.6755467276193519,
      "eval_f1": 0.6755467276193519,
      "eval_loss": 0.1096724346280098,
      "eval_precision": 0.6755467276193519,
      "eval_recall": 0.6755467276193519,
      "eval_runtime": 97.2211,
      "eval_samples_per_second": 16.529,
      "eval_steps_per_second": 1.039,
      "step": 200
    },
    {
      "epoch": 0.16,
      "eval_accuracy": 0.7780849810853704,
      "eval_f1": 0.7780849810853703,
      "eval_loss": 0.08659958839416504,
      "eval_precision": 0.7780849810853704,
      "eval_recall": 0.7780849810853704,
      "eval_runtime": 98.762,
      "eval_samples_per_second": 16.271,
      "eval_steps_per_second": 1.023,
      "step": 300
    },
    {
      "epoch": 0.21,
      "eval_accuracy": 0.7477716669827422,
      "eval_f1": 0.7477716669827422,
      "eval_loss": 0.10182594507932663,
      "eval_precision": 0.7477716669827422,
      "eval_recall": 0.7477716669827422,
      "eval_runtime": 99.9428,
      "eval_samples_per_second": 16.079,
      "eval_steps_per_second": 1.011,
      "step": 400
    },
    {
      "epoch": 0.27,
      "learning_rate": 1.4669509594882732e-05,
      "loss": 0.0975,
      "step": 500
    },
    {
      "epoch": 0.27,
      "eval_accuracy": 0.827712178226716,
      "eval_f1": 0.827712178226716,
      "eval_loss": 0.06453556567430496,
      "eval_precision": 0.827712178226716,
      "eval_recall": 0.827712178226716,
      "eval_runtime": 100.1167,
      "eval_samples_per_second": 16.051,
      "eval_steps_per_second": 1.009,
      "step": 500
    },
    {
      "epoch": 0.32,
      "eval_accuracy": 0.7984968109634982,
      "eval_f1": 0.7984968109634982,
      "eval_loss": 0.07669692486524582,
      "eval_precision": 0.7984968109634982,
      "eval_recall": 0.7984968109634982,
      "eval_runtime": 101.2405,
      "eval_samples_per_second": 15.873,
      "eval_steps_per_second": 0.998,
      "step": 600
    },
    {
      "epoch": 0.37,
      "eval_accuracy": 0.7903320790122471,
      "eval_f1": 0.7903320790122471,
      "eval_loss": 0.07575991004705429,
      "eval_precision": 0.7903320790122471,
      "eval_recall": 0.7903320790122471,
      "eval_runtime": 99.3914,
      "eval_samples_per_second": 16.168,
      "eval_steps_per_second": 1.016,
      "step": 700
    },
    {
      "epoch": 0.43,
      "eval_accuracy": 0.7865491530837334,
      "eval_f1": 0.7865491530837335,
      "eval_loss": 0.08622009307146072,
      "eval_precision": 0.7865491530837334,
      "eval_recall": 0.7865491530837334,
      "eval_runtime": 102.0728,
      "eval_samples_per_second": 15.744,
      "eval_steps_per_second": 0.989,
      "step": 800
    },
    {
      "epoch": 0.48,
      "eval_accuracy": 0.6891712497629433,
      "eval_f1": 0.6891712497629433,
      "eval_loss": 0.12430301308631897,
      "eval_precision": 0.6891712497629433,
      "eval_recall": 0.6891712497629433,
      "eval_runtime": 101.8092,
      "eval_samples_per_second": 15.784,
      "eval_steps_per_second": 0.992,
      "step": 900
    },
    {
      "epoch": 0.53,
      "learning_rate": 9.339019189765458e-06,
      "loss": 0.1389,
      "step": 1000
    },
    {
      "epoch": 0.53,
      "eval_accuracy": 0.8255961352271253,
      "eval_f1": 0.8255961352271252,
      "eval_loss": 0.07946911454200745,
      "eval_precision": 0.8255961352271253,
      "eval_recall": 0.8255961352271253,
      "eval_runtime": 101.762,
      "eval_samples_per_second": 15.792,
      "eval_steps_per_second": 0.993,
      "step": 1000
    },
    {
      "epoch": 0.59,
      "eval_accuracy": 0.470200724644914,
      "eval_f1": 0.470200724644914,
      "eval_loss": 0.1683182567358017,
      "eval_precision": 0.470200724644914,
      "eval_recall": 0.470200724644914,
      "eval_runtime": 100.8271,
      "eval_samples_per_second": 15.938,
      "eval_steps_per_second": 1.002,
      "step": 1100
    },
    {
      "epoch": 0.64,
      "eval_accuracy": 0.6635990697395869,
      "eval_f1": 0.6635990697395869,
      "eval_loss": 0.12526559829711914,
      "eval_precision": 0.6635990697395869,
      "eval_recall": 0.6635990697395869,
      "eval_runtime": 98.9873,
      "eval_samples_per_second": 16.234,
      "eval_steps_per_second": 1.02,
      "step": 1200
    }
  ],
  "logging_steps": 500,
  "max_steps": 1876,
  "num_train_epochs": 1,
  "save_steps": 100,
  "total_flos": 2670453492940800.0,
  "trial_name": null,
  "trial_params": null
}