File size: 1,694 Bytes
8c769d7
394c44e
 
 
 
 
 
 
 
 
 
8c769d7
 
394c44e
 
8c769d7
394c44e
8c769d7
ac4e2fb
394c44e
98c3333
f01eb9c
98c3333
8c769d7
394c44e
8c769d7
394c44e
8c769d7
394c44e
8c769d7
394c44e
8c769d7
394c44e
8c769d7
394c44e
8c769d7
394c44e
8c769d7
394c44e
8c769d7
394c44e
 
ac4e2fb
394c44e
 
 
 
ac4e2fb
8c769d7
394c44e
8c769d7
ac4e2fb
 
98c3333
 
 
 
 
8c769d7
 
394c44e
8c769d7
ac4e2fb
 
b3c3794
394c44e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine_tuned_model_resume
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_model_resume

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4879
- Accuracy: 0.8
- F1: 0.7892

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.6093        | 1.0   | 60   | 1.3628          | 0.4      | 0.2307 |
| 1.1424        | 2.0   | 120  | 0.8058          | 0.8333   | 0.8121 |
| 0.8537        | 3.0   | 180  | 1.0414          | 0.5333   | 0.4922 |
| 0.6039        | 4.0   | 240  | 0.5947          | 0.8333   | 0.8307 |
| 0.4326        | 5.0   | 300  | 0.4879          | 0.8      | 0.7892 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1