File size: 1,694 Bytes
8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e 8c769d7 ac4e2fb 394c44e 98c3333 f01eb9c 98c3333 8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e 8c769d7 394c44e ac4e2fb 394c44e ac4e2fb 8c769d7 394c44e 8c769d7 ac4e2fb 98c3333 8c769d7 394c44e 8c769d7 ac4e2fb b3c3794 394c44e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine_tuned_model_resume
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine_tuned_model_resume
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4879
- Accuracy: 0.8
- F1: 0.7892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.6093 | 1.0 | 60 | 1.3628 | 0.4 | 0.2307 |
| 1.1424 | 2.0 | 120 | 0.8058 | 0.8333 | 0.8121 |
| 0.8537 | 3.0 | 180 | 1.0414 | 0.5333 | 0.4922 |
| 0.6039 | 4.0 | 240 | 0.5947 | 0.8333 | 0.8307 |
| 0.4326 | 5.0 | 300 | 0.4879 | 0.8 | 0.7892 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|