File size: 6,965 Bytes
ab2369a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import sys

import torch
import os
import json
import argparse
sys.path.append(os.getcwd())

from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import glob

from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from diffusers import PNDMScheduler, UniPCMultistepScheduler,DDIMScheduler
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel
from scheduler.scheduling_dpmsolver_multistep_lm import DPMSolverMultistepLMScheduler
from scheduler.scheduling_ddim_lm import DDIMLMScheduler

from controlnet_aux import OpenposeDetector
import cv2
import numpy as np


def main():
    parser = argparse.ArgumentParser(description="sampling script for ControlNet-pose.")
    parser.add_argument('--seed', type=int, default=1)
    parser.add_argument('--num_inference_steps', type=int, default=20)
    parser.add_argument('--guidance', type=float, default=7.5)
    parser.add_argument('--sampler_type', type = str,default='lag')
    parser.add_argument('--prompt', type=str, default='an asian girl')
    parser.add_argument('--lamb', type=float, default=5.0)
    parser.add_argument('--kappa', type=float, default=0.0)
    parser.add_argument('--freeze', type=float, default=0.0)
    parser.add_argument('--prompt_list', nargs='+', type=str,
                        default=['an asian girl'])
    parser.add_argument('--save_dir', type=str, default='/xxx/xxx/result/0402')
    parser.add_argument('--controlnet_dir', type=str, default="lllyasviel/sd-controlnet-openpose")
    parser.add_argument('--sd_dir', type=str, default="/xxx/xxx/stable-diffusion-v1-5")


    args = parser.parse_args()
    if args.sampler_type in ['bdia']:
        parser.add_argument('--bdia_gamma', type=float, default=0.5)
    if args.sampler_type in ['edict']:
        parser.add_argument('--edict_p', type=float, default=0.93)
    args = parser.parse_args()
    device = 'cuda'
    sampler_type = args.sampler_type
    guidance_scale = args.guidance
    num_inference_steps = args.num_inference_steps
    lamb = args.lamb
    freeze = args.freeze
    kappa = args.kappa

    save_dir = args.save_dir
    if not os.path.exists(save_dir):
        os.makedirs(save_dir, exist_ok=True)

    # torch.manual_seed(args.seed)
    controlnet = ControlNetModel.from_pretrained(
        args.controlnet_dir, torch_dtype=torch.float16
    )

    control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
        args.sd_dir,
        controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
    )
    control_pipe.enable_model_cpu_offload()
    control_pipe.safety_checker = None

    if sampler_type in ['dpm_lm']:
        control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
        control_pipe.scheduler.config.solver_order = 3
        control_pipe.scheduler.config.algorithm_type = "dpmsolver"
        control_pipe.scheduler.lamb = lamb
        control_pipe.scheduler.lm = True
    elif sampler_type in ['dpm']:
        control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
        control_pipe.scheduler.config.solver_order = 3
        control_pipe.scheduler.config.algorithm_type = "dpmsolver"
        control_pipe.scheduler.lamb = lamb
        control_pipe.scheduler.lm = False
    elif sampler_type in ['dpm++']:
        control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
        control_pipe.scheduler.config.solver_order = 3
        control_pipe.scheduler.config.algorithm_type = "dpmsolver++"
        control_pipe.scheduler.lamb = lamb
        control_pipe.scheduler.lm = False
    elif sampler_type in ['dpm++_lm']:
        control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
        control_pipe.scheduler.config.solver_order = 3
        control_pipe.scheduler.config.algorithm_type = "dpmsolver++"
        control_pipe.scheduler.lamb = lamb
        control_pipe.scheduler.lm = True
    elif sampler_type in ['pndm']:
        control_pipe.scheduler = PNDMScheduler.from_config(control_pipe.scheduler.config)
    elif sampler_type in ['ddim']:
        control_pipe.scheduler = DDIMScheduler.from_config(control_pipe.scheduler.config)
        # control_pipe.scheduler.lamb = lamb
        # control_pipe.scheduler.lm = False
        # control_pipe.scheduler.kappa = kappa
    elif sampler_type in ['ddim_lm']:
        control_pipe.scheduler = DDIMLMScheduler.from_config(control_pipe.scheduler.config)
        control_pipe.scheduler.lamb = lamb
        control_pipe.scheduler.lm = True
        control_pipe.scheduler.kappa = kappa
        control_pipe.scheduler.freeze = freeze
    elif sampler_type in ['unipc']:
        control_pipe.scheduler = UniPCMultistepScheduler.from_config(control_pipe.scheduler.config)

    openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')

    image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png")

    image = openpose(image)


    for prompt, negative_prompt in [["chef in the kitchen",''],
                                    ["Captain America", ''],
                                    ["Spider-Man", ''],
                                    ["Superman", ''],
                                    ["Hulk", ''],
                                    ["Batman", ''],
                                    ["Iron Man", ''],
                                    ["Deadpool", ''],
                                    ["Winnie-the-Pooh", ''],
                                    ["Snow White", ''],
                                    ["Buzz Lightyear", ''],
                                    ["Cinderella", ''],
                                    ["Donald Duck", ''],
                                    ["policeman", ''],
                                    ["a doctor", ''],
                                    ["a teacher", ''],
                                    ['woman standing amidst a sea of wildflowers, with the warm sun shining down on her.',
                                        ''],
                                    ['a stunning Arabic woman dressed in traditional clothing', ''],
                                    ['a stunning Asian woman dressed in traditional clothing', ''],
                                    ]:
        for seed in range(15):
            torch.manual_seed(seed)
            res = control_pipe(
                prompt = prompt, image=image, num_inference_steps=num_inference_steps,
            ).images[0]

            res.save(os.path.join(save_dir,
                                  f"{prompt[:20]}_seed{seed}_{sampler_type}_infer{num_inference_steps}_g{guidance_scale}_lamb{args.lamb}.png"))



if __name__ == '__main__':
    main()