File size: 38,332 Bytes
17f7755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Optional, Tuple, Union
from transformers.models.mask2former.modeling_mask2former import (
Mask2FormerMaskedAttentionDecoderOutput, Mask2FormerModelOutput,
Mask2FormerForUniversalSegmentationOutput, Mask2FormerMLPPredictionHead,
sample_point, pair_wise_sigmoid_cross_entropy_loss, pair_wise_dice_loss,
sigmoid_cross_entropy_loss, dice_loss)
from torch import Tensor
import torch.nn.functional as F
from transformers.file_utils import is_scipy_available
if is_scipy_available():
from scipy.optimize import linear_sum_assignment
def get_classification_logits(x, text_classifier, logit_scale):
# x in shape of [B, *, C]
# text_classifier in shape of [num_classes, C]
# logit_scale is a learnable scalar https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/model.py#L201
# return: [B, *, num_classes]
x = F.normalize(x, dim=-1)
text_classifier = F.normalize(text_classifier, dim=-1)
logit_scale = torch.clamp(logit_scale.exp(), max=100)
pred_logits = logit_scale * x @ text_classifier.T # B, *, N + 1
return pred_logits
def _post_init(self):
self.class_embed = Mask2FormerMLPPredictionHead(self.config.hidden_dim, self.config.hidden_dim, self.config.hidden_dim, 3)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
def ov_class_predictor(self, x, text_classifier):
x = self.class_embed(x)
all_pred_logits = []
for per_x, per_text_classifier in zip(x, text_classifier):
per_pred_logits = get_classification_logits(per_x.unsqueeze(0), per_text_classifier, self.logit_scale)
all_pred_logits.append(per_pred_logits.squeeze(0))
return all_pred_logits
def Mask2FormerLoss_loss_labels(
self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
) -> Dict[str, Tensor]:
batch_size = len(class_queries_logits)
num_queries = class_queries_logits[0].shape[0]
all_ce_loss = []
for i in range(batch_size):
num_labels_plus1 = class_queries_logits[i].shape[-1]
empty_weight = torch.ones(num_labels_plus1)
empty_weight[-1] = self.eos_coef
empty_weight = empty_weight.to(class_queries_logits[i].device).to(class_queries_logits[i].dtype)
criterion = nn.CrossEntropyLoss(weight=empty_weight, reduction='none')
target_classes_o = class_labels[i][indices[i][1]]
target_classes = torch.full(
(num_queries, ), fill_value=num_labels_plus1-1, dtype=torch.int64, device=class_queries_logits[i].device)
target_classes[indices[i][0]] = target_classes_o.to(class_queries_logits[i].device)
target_classes = target_classes.unsqueeze(0)
pred_logits = class_queries_logits[i].unsqueeze(0).transpose(1, 2)
loss_ce = criterion(pred_logits, target_classes)
all_ce_loss.append(loss_ce)
losses = {"loss_cross_entropy": torch.cat(all_ce_loss, dim=-1).mean()}
return losses
def Mask2FormerLoss_loss_masks(
self,
masks_queries_logits: torch.Tensor,
mask_labels: List[torch.Tensor],
indices: Tuple[np.array],
num_masks: int
) -> Dict[str, torch.Tensor]:
src_idx = self._get_predictions_permutation_indices(indices)
tgt_idx = self._get_targets_permutation_indices(indices)
# shape (batch_size * num_queries, height, width)
pred_masks = masks_queries_logits[src_idx]
# shape (batch_size, num_queries, height, width)
# pad all and stack the targets to the num_labels dimension
target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates
pred_masks = pred_masks[:, None]
target_masks = target_masks[:, None]
# Sample point coordinates
with torch.no_grad():
point_coordinates = self.sample_points_using_uncertainty(
pred_masks,
lambda logits: self.calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
point_labels = sample_point(target_masks.to(torch.bfloat16), point_coordinates.to(torch.bfloat16), align_corners=False).squeeze(1)
point_logits = sample_point(pred_masks, point_coordinates.to(pred_masks.dtype), align_corners=False).squeeze(1)
losses = {
"loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
"loss_dice": dice_loss(point_logits, point_labels, num_masks),
}
del pred_masks
del target_masks
return losses
def Mask2FormerLoss_sample_points_using_uncertainty(
self,
logits: torch.Tensor,
uncertainty_function,
num_points: int,
oversample_ratio: int,
importance_sample_ratio: float,
) -> torch.Tensor:
num_boxes = logits.shape[0]
num_points_sampled = int(num_points * oversample_ratio)
# Get random point coordinates
point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
# Get sampled prediction value for the point coordinates
point_logits = sample_point(logits, point_coordinates.to(logits.dtype), align_corners=False)
# Calculate the uncertainties based on the sampled prediction values of the points
point_uncertainties = uncertainty_function(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
idx += shift[:, None]
point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)
if num_random_points > 0:
point_coordinates = torch.cat(
[point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
dim=1,
)
return point_coordinates
@torch.no_grad()
def Mask2FormerHungarianMatcher_forward(
self,
masks_queries_logits: torch.Tensor,
class_queries_logits: torch.Tensor,
mask_labels: torch.Tensor,
class_labels: torch.Tensor,
) -> List[Tuple[Tensor]]:
indices: List[Tuple[np.array]] = []
# iterate through batch size
batch_size = masks_queries_logits.shape[0]
for i in range(batch_size):
pred_probs = class_queries_logits[i].softmax(-1)
pred_mask = masks_queries_logits[i]
# Compute the classification cost. Contrary to the loss, we don't use the NLL, but approximate it in 1 - proba[target class]. The 1 is a constant that doesn't change the matching, it can be ommitted.
cost_class = -pred_probs[:, class_labels[i]]
target_mask = mask_labels[i].to(pred_mask)
target_mask = target_mask[:, None]
pred_mask = pred_mask[:, None]
# Sample ground truth and predicted masks
point_coordinates = torch.rand(1, self.num_points, 2, device=pred_mask.device)
target_coordinates = point_coordinates.repeat(target_mask.shape[0], 1, 1).to(target_mask.dtype)
target_mask = sample_point(target_mask, target_coordinates, align_corners=False).squeeze(1)
pred_coordinates = point_coordinates.repeat(pred_mask.shape[0], 1, 1).to(pred_mask.dtype)
pred_mask = sample_point(pred_mask, pred_coordinates, align_corners=False).squeeze(1)
# compute the cross entropy loss between each mask pairs -> shape (num_queries, num_labels)
cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
# Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels)
cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
# final cost matrix
cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
# eliminate infinite values in cost_matrix to avoid the error ``ValueError: cost matrix is infeasible``
cost_matrix = torch.minimum(cost_matrix, torch.tensor(1e10))
cost_matrix = torch.maximum(cost_matrix, torch.tensor(-1e10))
cost_matrix = torch.nan_to_num(cost_matrix, 0)
# do the assigmented using the hungarian algorithm in scipy
assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.to(torch.float32).cpu())
indices.append(assigned_indices)
# It could be stacked in one tensor
matched_indices = [
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
]
return matched_indices
def Mask2FormerMaskedAttentionDecoder_forward_first3layers(
self,
inputs_embeds: torch.Tensor = None,
multi_stage_positional_embeddings: torch.Tensor = None,
pixel_embeddings: torch.Tensor = None,
encoder_hidden_states: torch.Tensor = None,
query_position_embeddings: torch.Tensor = None,
feature_size_list: List = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
The query embeddings that are passed into the decoder.
multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
Position embeddings that are added to the keys in each cross(masked)-attention layer.
pixel_embeddings (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
Decoder.
query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross(masked)-attention of the decoder.
feature_size_list (`List[torch.Size]`):
This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
# intermediate hidden states with layernorm applied - required for predicting class logits
intermediate = ()
# decoder layers
all_hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
# intermediate mask predictions from transformer decoder layers
intermediate_mask_predictions = ()
intermediate_hidden_states = self.layernorm(inputs_embeds)
intermediate += (intermediate_hidden_states,)
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
)
intermediate_mask_predictions += (predicted_mask,)
for idx, decoder_layer in enumerate(self.layers[:3]):
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
None,
None,
output_attentions,
)
else:
level_index = idx % self.num_feature_levels
where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype)
# Multiply the attention mask instead of indexing to avoid issue in torch.export.
attention_mask = attention_mask * where.unsqueeze(-1)
layer_outputs = decoder_layer(
hidden_states,
level_index=level_index,
position_embeddings=multi_stage_positional_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
)
intermediate_hidden_states = self.layernorm(layer_outputs[0])
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states,
pixel_embeddings,
feature_size_list[(idx + 1) % self.num_feature_levels],
)
intermediate_mask_predictions += (predicted_mask,)
# add intermediate hidden states with layer norm applied which will be used for predicting class logits
intermediate += (intermediate_hidden_states,)
hidden_states = layer_outputs[0]
if output_attentions:
attentions += (layer_outputs[1],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = hidden_states.transpose(1, 0)
if not return_dict:
outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
return tuple(v for v in outputs if v is not None)
return Mask2FormerMaskedAttentionDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=attentions,
intermediate_hidden_states=intermediate,
masks_queries_logits=intermediate_mask_predictions,
)
def Mask2FormerMaskedAttentionDecoder_forward_last3layers(
self,
inputs_embeds: torch.Tensor = None,
multi_stage_positional_embeddings: torch.Tensor = None,
pixel_embeddings: torch.Tensor = None,
encoder_hidden_states: torch.Tensor = None,
query_position_embeddings: torch.Tensor = None,
feature_size_list: List = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
The query embeddings that are passed into the decoder.
multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
Position embeddings that are added to the keys in each cross(masked)-attention layer.
pixel_embeddings (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
Decoder.
query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross(masked)-attention of the decoder.
feature_size_list (`List[torch.Size]`):
This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
# intermediate hidden states with layernorm applied - required for predicting class logits
intermediate = ()
# decoder layers
all_hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
# intermediate mask predictions from transformer decoder layers
intermediate_mask_predictions = ()
intermediate_hidden_states = self.layernorm(inputs_embeds)
intermediate += (intermediate_hidden_states,)
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
)
intermediate_mask_predictions += (predicted_mask,)
for _idx, decoder_layer in enumerate(self.layers[3:]):
idx = _idx + 3
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop):
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
None,
None,
output_attentions,
)
else:
level_index = idx % self.num_feature_levels
where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype)
# Multiply the attention mask instead of indexing to avoid issue in torch.export.
attention_mask = attention_mask * where.unsqueeze(-1)
layer_outputs = decoder_layer(
hidden_states,
level_index=level_index,
position_embeddings=multi_stage_positional_embeddings,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
)
intermediate_hidden_states = self.layernorm(layer_outputs[0])
predicted_mask, attention_mask = self.mask_predictor(
intermediate_hidden_states,
pixel_embeddings,
feature_size_list[(idx + 1) % self.num_feature_levels],
)
intermediate_mask_predictions += (predicted_mask,)
# add intermediate hidden states with layer norm applied which will be used for predicting class logits
intermediate += (intermediate_hidden_states,)
hidden_states = layer_outputs[0]
if output_attentions:
attentions += (layer_outputs[1],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = hidden_states.transpose(1, 0)
if not return_dict:
outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
return tuple(v for v in outputs if v is not None)
return Mask2FormerMaskedAttentionDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=attentions,
intermediate_hidden_states=intermediate,
masks_queries_logits=intermediate_mask_predictions,
)
def Mask2FormerTransformerModule_forward_first_part(
self,
multi_scale_features: List[Tensor],
mask_features: Tensor,
output_hidden_states: bool = False,
output_attentions: bool = False,
) -> Mask2FormerMaskedAttentionDecoderOutput:
multi_stage_features = []
multi_stage_positional_embeddings = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(multi_scale_features[i].shape[-2:])
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
multi_stage_features.append(
self.input_projections[i](multi_scale_features[i]).flatten(2)
+ self.level_embed.weight[i][None, :, None]
)
# Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
_, batch_size, _ = multi_stage_features[0].shape
# [num_queries, batch_size, num_channels]
query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)
decoder_output = self.decoder.Mask2FormerMaskedAttentionDecoder_forward_first3layers(
inputs_embeds=query_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
pixel_embeddings=mask_features,
encoder_hidden_states=multi_stage_features,
query_position_embeddings=query_embeddings,
feature_size_list=size_list,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
return decoder_output
def Mask2FormerTransformerModule_forward_second_part(
self,
query_features: Tensor,
query_embeddings: Tensor,
multi_scale_features: List[Tensor],
mask_features: Tensor,
output_hidden_states: bool = False,
output_attentions: bool = False,
) -> Mask2FormerMaskedAttentionDecoderOutput:
multi_stage_features = []
multi_stage_positional_embeddings = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(multi_scale_features[i].shape[-2:])
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
multi_stage_features.append(
self.input_projections[i](multi_scale_features[i]).flatten(2)
+ self.level_embed.weight[i][None, :, None]
)
# Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
_, batch_size, _ = multi_stage_features[0].shape
# [num_queries, batch_size, num_channels]
# query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
# query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)
decoder_output = self.decoder.Mask2FormerMaskedAttentionDecoder_forward_last3layers(
inputs_embeds=query_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
pixel_embeddings=mask_features,
encoder_hidden_states=multi_stage_features,
query_position_embeddings=query_embeddings,
feature_size_list=size_list,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
return decoder_output
def Mask2FormerModel_forward_first_part(
self,
pixel_values: Tensor,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerModelOutput:
r"""
Returns:
`Mask2FormerModelOutput`
Examples:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, Mask2FormerModel
>>> # load image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> inputs = image_processor(image, return_tensors="pt")
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
>>> print(outputs.transformer_decoder_last_hidden_state.shape)
torch.Size([1, 100, 256])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, _, height, width = pixel_values.shape
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
pixel_level_module_output = self.pixel_level_module(
pixel_values=pixel_values, output_hidden_states=output_hidden_states
)
transformer_module_output = self.transformer_module.Mask2FormerTransformerModule_forward_first_part(
multi_scale_features=pixel_level_module_output.decoder_hidden_states,
mask_features=pixel_level_module_output.decoder_last_hidden_state,
output_hidden_states=True,
output_attentions=output_attentions,
)
query_features = transformer_module_output.last_hidden_state
return query_features, pixel_level_module_output
def Mask2FormerModel_forward_second_part(
self,
query_features: Tensor,
query_embeddings: Tensor,
pixel_level_module_output,
pixel_values: Tensor,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerModelOutput:
r"""
Returns:
`Mask2FormerModelOutput`
Examples:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, Mask2FormerModel
>>> # load image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
>>> inputs = image_processor(image, return_tensors="pt")
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
>>> print(outputs.transformer_decoder_last_hidden_state.shape)
torch.Size([1, 100, 256])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, _, height, width = pixel_values.shape
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
transformer_module_output = self.transformer_module.Mask2FormerTransformerModule_forward_second_part(
query_features=query_features,
query_embeddings=query_embeddings,
multi_scale_features=pixel_level_module_output.decoder_hidden_states,
mask_features=pixel_level_module_output.decoder_last_hidden_state,
output_hidden_states=True,
output_attentions=output_attentions,
)
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
transformer_decoder_intermediate_states = None
if output_hidden_states:
encoder_hidden_states = pixel_level_module_output.encoder_hidden_states
pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states
transformer_decoder_hidden_states = transformer_module_output.hidden_states
transformer_decoder_intermediate_states = transformer_module_output.intermediate_hidden_states
output = Mask2FormerModelOutput(
encoder_last_hidden_state=pixel_level_module_output.encoder_last_hidden_state,
pixel_decoder_last_hidden_state=pixel_level_module_output.decoder_last_hidden_state,
transformer_decoder_last_hidden_state=transformer_module_output.last_hidden_state,
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
transformer_decoder_intermediate_states=transformer_decoder_intermediate_states,
attentions=transformer_module_output.attentions,
masks_queries_logits=transformer_module_output.masks_queries_logits,
)
if not return_dict:
output = tuple(v for v in output.values() if v is not None)
return output
def Mask2FormerForUniversalSegmentation_forward_first_part(
self,
pixel_values: Tensor,
mask_labels: Optional[List[Tensor]] = None,
class_labels: Optional[List[Tensor]] = None,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_auxiliary_logits: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerForUniversalSegmentationOutput:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
query_features, pixel_level_module_output = self.model.Mask2FormerModel_forward_first_part(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
output_attentions=output_attentions,
return_dict=True,
)
return query_features, pixel_level_module_output
def Mask2FormerForUniversalSegmentation_forward_second_part(
self,
query_features,
query_embeddings,
pixel_level_module_output,
text_classifier,
pixel_values: Tensor,
mask_labels: Optional[List[Tensor]] = None,
class_labels: Optional[List[Tensor]] = None,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_auxiliary_logits: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Mask2FormerForUniversalSegmentationOutput:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model.Mask2FormerModel_forward_second_part(
query_features=query_features,
query_embeddings=query_embeddings,
pixel_level_module_output=pixel_level_module_output,
pixel_values=pixel_values,
pixel_mask=pixel_mask,
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
output_attentions=output_attentions,
return_dict=True,
)
loss, loss_dict, auxiliary_logits = None, None, None
class_queries_logits = ()
for decoder_output in outputs.transformer_decoder_intermediate_states:
class_prediction = self.ov_class_predictor(decoder_output.transpose(0, 1), text_classifier)
# class_prediction = self.class_predictor(decoder_output.transpose(0, 1))
class_queries_logits += (class_prediction,)
masks_queries_logits = outputs.masks_queries_logits
auxiliary_logits = self.get_auxiliary_logits(class_queries_logits, masks_queries_logits)
if mask_labels is not None and class_labels is not None:
loss_dict = self.get_loss_dict(
masks_queries_logits=masks_queries_logits[-1],
class_queries_logits=class_queries_logits[-1],
mask_labels=mask_labels,
class_labels=class_labels,
auxiliary_predictions=auxiliary_logits,
)
loss = self.get_loss(loss_dict)
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
if output_hidden_states:
encoder_hidden_states = outputs.encoder_hidden_states
pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states
transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states
output_auxiliary_logits = (
self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
)
if not output_auxiliary_logits:
auxiliary_logits = None
output = Mask2FormerForUniversalSegmentationOutput(
loss=loss,
class_queries_logits=class_queries_logits[-1],
masks_queries_logits=masks_queries_logits[-1],
auxiliary_logits=auxiliary_logits,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
pixel_decoder_last_hidden_state=outputs.pixel_decoder_last_hidden_state,
transformer_decoder_last_hidden_state=outputs.transformer_decoder_last_hidden_state,
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
attentions=outputs.attentions,
)
if not return_dict:
output = tuple(v for v in output.values() if v is not None)
if loss is not None:
output = (loss) + output
return output
|