File size: 38,332 Bytes
17f7755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Optional, Tuple, Union
from transformers.models.mask2former.modeling_mask2former import (
     Mask2FormerMaskedAttentionDecoderOutput, Mask2FormerModelOutput,
     Mask2FormerForUniversalSegmentationOutput, Mask2FormerMLPPredictionHead,
     sample_point, pair_wise_sigmoid_cross_entropy_loss, pair_wise_dice_loss,
     sigmoid_cross_entropy_loss, dice_loss)
from torch import Tensor
import torch.nn.functional as F

from transformers.file_utils import is_scipy_available

if is_scipy_available():
    from scipy.optimize import linear_sum_assignment


def get_classification_logits(x, text_classifier, logit_scale):
    # x in shape of [B, *, C]
    # text_classifier in shape of [num_classes, C]
    # logit_scale is a learnable scalar https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/model.py#L201
    # return: [B, *, num_classes]
    x = F.normalize(x, dim=-1)
    text_classifier = F.normalize(text_classifier, dim=-1)
    logit_scale = torch.clamp(logit_scale.exp(), max=100)
    pred_logits = logit_scale * x @ text_classifier.T # B, *, N + 1
    return pred_logits


def _post_init(self):
    self.class_embed = Mask2FormerMLPPredictionHead(self.config.hidden_dim, self.config.hidden_dim, self.config.hidden_dim, 3)
    self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))


def ov_class_predictor(self, x, text_classifier):
    x = self.class_embed(x)
    all_pred_logits = []
    for per_x, per_text_classifier in zip(x, text_classifier):
        per_pred_logits = get_classification_logits(per_x.unsqueeze(0), per_text_classifier, self.logit_scale)
        all_pred_logits.append(per_pred_logits.squeeze(0))

    return all_pred_logits



def Mask2FormerLoss_loss_labels(
        self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
    ) -> Dict[str, Tensor]:
        batch_size = len(class_queries_logits)
        num_queries = class_queries_logits[0].shape[0]
        all_ce_loss = []
        for i in range(batch_size):
            num_labels_plus1 = class_queries_logits[i].shape[-1]
            empty_weight = torch.ones(num_labels_plus1)
            empty_weight[-1] = self.eos_coef
            empty_weight = empty_weight.to(class_queries_logits[i].device).to(class_queries_logits[i].dtype)
            criterion = nn.CrossEntropyLoss(weight=empty_weight, reduction='none')
            target_classes_o = class_labels[i][indices[i][1]]
            target_classes = torch.full(
                 (num_queries, ), fill_value=num_labels_plus1-1, dtype=torch.int64, device=class_queries_logits[i].device)
            target_classes[indices[i][0]] = target_classes_o.to(class_queries_logits[i].device)
            target_classes = target_classes.unsqueeze(0)
            pred_logits = class_queries_logits[i].unsqueeze(0).transpose(1, 2)
            loss_ce = criterion(pred_logits, target_classes)
            all_ce_loss.append(loss_ce)
        losses = {"loss_cross_entropy": torch.cat(all_ce_loss, dim=-1).mean()}
        return losses

def Mask2FormerLoss_loss_masks(
        self, 
        masks_queries_logits: torch.Tensor,
        mask_labels: List[torch.Tensor],
        indices: Tuple[np.array],
        num_masks: int
    ) -> Dict[str, torch.Tensor]:
        src_idx = self._get_predictions_permutation_indices(indices)
        tgt_idx = self._get_targets_permutation_indices(indices)
        # shape (batch_size * num_queries, height, width)
        pred_masks = masks_queries_logits[src_idx]
        # shape (batch_size, num_queries, height, width)
        # pad all and stack the targets to the num_labels dimension
        target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
        target_masks = target_masks[tgt_idx]

        # No need to upsample predictions as we are using normalized coordinates
        pred_masks = pred_masks[:, None]
        target_masks = target_masks[:, None]

        # Sample point coordinates
        with torch.no_grad():
            point_coordinates = self.sample_points_using_uncertainty(
                pred_masks,
                lambda logits: self.calculate_uncertainty(logits),
                self.num_points,
                self.oversample_ratio,
                self.importance_sample_ratio,
            )
            point_labels = sample_point(target_masks.to(torch.bfloat16), point_coordinates.to(torch.bfloat16), align_corners=False).squeeze(1)
        
        point_logits = sample_point(pred_masks, point_coordinates.to(pred_masks.dtype), align_corners=False).squeeze(1)

        losses = {
            "loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
            "loss_dice": dice_loss(point_logits, point_labels, num_masks),
        }

        del pred_masks
        del target_masks
        return losses

def Mask2FormerLoss_sample_points_using_uncertainty(
        self,
        logits: torch.Tensor,
        uncertainty_function,
        num_points: int,
        oversample_ratio: int,
        importance_sample_ratio: float,
    ) -> torch.Tensor:
        
        num_boxes = logits.shape[0]
        num_points_sampled = int(num_points * oversample_ratio)

        # Get random point coordinates
        point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
        # Get sampled prediction value for the point coordinates
        point_logits = sample_point(logits, point_coordinates.to(logits.dtype), align_corners=False)
        # Calculate the uncertainties based on the sampled prediction values of the points
        point_uncertainties = uncertainty_function(point_logits)

        num_uncertain_points = int(importance_sample_ratio * num_points)
        num_random_points = num_points - num_uncertain_points

        idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
        shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
        idx += shift[:, None]
        point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)

        if num_random_points > 0:
            point_coordinates = torch.cat(
                [point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
                dim=1,
            )
        return point_coordinates



@torch.no_grad()
def Mask2FormerHungarianMatcher_forward(
        self,
        masks_queries_logits: torch.Tensor,
        class_queries_logits: torch.Tensor,
        mask_labels: torch.Tensor,
        class_labels: torch.Tensor,
    ) -> List[Tuple[Tensor]]:
        indices: List[Tuple[np.array]] = []

        # iterate through batch size
        batch_size = masks_queries_logits.shape[0]
        for i in range(batch_size):
            pred_probs = class_queries_logits[i].softmax(-1)
            pred_mask = masks_queries_logits[i]

            # Compute the classification cost. Contrary to the loss, we don't use the NLL, but approximate it in 1 - proba[target class]. The 1 is a constant that doesn't change the matching, it can be ommitted.
            cost_class = -pred_probs[:, class_labels[i]]
            target_mask = mask_labels[i].to(pred_mask)
            target_mask = target_mask[:, None]
            pred_mask = pred_mask[:, None]

            # Sample ground truth and predicted masks
            point_coordinates = torch.rand(1, self.num_points, 2, device=pred_mask.device)

            target_coordinates = point_coordinates.repeat(target_mask.shape[0], 1, 1).to(target_mask.dtype)
            target_mask = sample_point(target_mask, target_coordinates, align_corners=False).squeeze(1)

            pred_coordinates = point_coordinates.repeat(pred_mask.shape[0], 1, 1).to(pred_mask.dtype)
            pred_mask = sample_point(pred_mask, pred_coordinates, align_corners=False).squeeze(1)

            # compute the cross entropy loss between each mask pairs -> shape (num_queries, num_labels)
            cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
            # Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels)
            cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
            # final cost matrix
            cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
            # eliminate infinite values in cost_matrix to avoid the error ``ValueError: cost matrix is infeasible``
            cost_matrix = torch.minimum(cost_matrix, torch.tensor(1e10))
            cost_matrix = torch.maximum(cost_matrix, torch.tensor(-1e10))
            cost_matrix = torch.nan_to_num(cost_matrix, 0)
            # do the assigmented using the hungarian algorithm in scipy
            assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.to(torch.float32).cpu())
            indices.append(assigned_indices)

        # It could be stacked in one tensor
        matched_indices = [
            (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
        ]
        return matched_indices




def Mask2FormerMaskedAttentionDecoder_forward_first3layers(
        self,
        inputs_embeds: torch.Tensor = None,
        multi_stage_positional_embeddings: torch.Tensor = None,
        pixel_embeddings: torch.Tensor = None,
        encoder_hidden_states: torch.Tensor = None,
        query_position_embeddings: torch.Tensor = None,
        feature_size_list: List = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
                The query embeddings that are passed into the decoder.
            multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
                Position embeddings that are added to the keys in each cross(masked)-attention layer.
            pixel_embeddings (`torch.FloatTensor`):
                Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
                Decoder.
            query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
                , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the
                cross(masked)-attention of the decoder.
            feature_size_list (`List[torch.Size]`):
                This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is not None:
            hidden_states = inputs_embeds

        # intermediate hidden states with layernorm applied - required for predicting class logits
        intermediate = ()

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        attentions = () if output_attentions else None

        # intermediate mask predictions from transformer decoder layers
        intermediate_mask_predictions = ()

        intermediate_hidden_states = self.layernorm(inputs_embeds)
        intermediate += (intermediate_hidden_states,)

        predicted_mask, attention_mask = self.mask_predictor(
            intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
        )
        intermediate_mask_predictions += (predicted_mask,)

        for idx, decoder_layer in enumerate(self.layers[:3]):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            dropout_probability = torch.rand([])

            if self.training and (dropout_probability < self.layerdrop):
                continue

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    None,
                    None,
                    output_attentions,
                )

            else:
                level_index = idx % self.num_feature_levels

                where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype)
                # Multiply the attention mask instead of indexing to avoid issue in torch.export.
                attention_mask = attention_mask * where.unsqueeze(-1)

                layer_outputs = decoder_layer(
                    hidden_states,
                    level_index=level_index,
                    position_embeddings=multi_stage_positional_embeddings,
                    query_position_embeddings=query_position_embeddings,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=attention_mask,
                    output_attentions=output_attentions,
                )

                intermediate_hidden_states = self.layernorm(layer_outputs[0])

                predicted_mask, attention_mask = self.mask_predictor(
                    intermediate_hidden_states,
                    pixel_embeddings,
                    feature_size_list[(idx + 1) % self.num_feature_levels],
                )

                intermediate_mask_predictions += (predicted_mask,)

                # add intermediate hidden states with layer norm applied which will be used for predicting class logits
                intermediate += (intermediate_hidden_states,)

            hidden_states = layer_outputs[0]

            if output_attentions:
                attentions += (layer_outputs[1],)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        hidden_states = hidden_states.transpose(1, 0)
        if not return_dict:
            outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
            return tuple(v for v in outputs if v is not None)

        return Mask2FormerMaskedAttentionDecoderOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=attentions,
            intermediate_hidden_states=intermediate,
            masks_queries_logits=intermediate_mask_predictions,
        )


def Mask2FormerMaskedAttentionDecoder_forward_last3layers(
        self,
        inputs_embeds: torch.Tensor = None,
        multi_stage_positional_embeddings: torch.Tensor = None,
        pixel_embeddings: torch.Tensor = None,
        encoder_hidden_states: torch.Tensor = None,
        query_position_embeddings: torch.Tensor = None,
        feature_size_list: List = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
                The query embeddings that are passed into the decoder.
            multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
                Position embeddings that are added to the keys in each cross(masked)-attention layer.
            pixel_embeddings (`torch.FloatTensor`):
                Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
                Decoder.
            query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
                , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the
                cross(masked)-attention of the decoder.
            feature_size_list (`List[torch.Size]`):
                This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is not None:
            hidden_states = inputs_embeds

        # intermediate hidden states with layernorm applied - required for predicting class logits
        intermediate = ()

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        attentions = () if output_attentions else None

        # intermediate mask predictions from transformer decoder layers
        intermediate_mask_predictions = ()

        intermediate_hidden_states = self.layernorm(inputs_embeds)
        intermediate += (intermediate_hidden_states,)

        predicted_mask, attention_mask = self.mask_predictor(
            intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
        )
        intermediate_mask_predictions += (predicted_mask,)

        for _idx, decoder_layer in enumerate(self.layers[3:]):
            idx = _idx + 3
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            dropout_probability = torch.rand([])

            if self.training and (dropout_probability < self.layerdrop):
                continue

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    None,
                    None,
                    output_attentions,
                )

            else:
                level_index = idx % self.num_feature_levels

                where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype)
                # Multiply the attention mask instead of indexing to avoid issue in torch.export.
                attention_mask = attention_mask * where.unsqueeze(-1)

                layer_outputs = decoder_layer(
                    hidden_states,
                    level_index=level_index,
                    position_embeddings=multi_stage_positional_embeddings,
                    query_position_embeddings=query_position_embeddings,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=attention_mask,
                    output_attentions=output_attentions,
                )

                intermediate_hidden_states = self.layernorm(layer_outputs[0])

                predicted_mask, attention_mask = self.mask_predictor(
                    intermediate_hidden_states,
                    pixel_embeddings,
                    feature_size_list[(idx + 1) % self.num_feature_levels],
                )

                intermediate_mask_predictions += (predicted_mask,)

                # add intermediate hidden states with layer norm applied which will be used for predicting class logits
                intermediate += (intermediate_hidden_states,)

            hidden_states = layer_outputs[0]

            if output_attentions:
                attentions += (layer_outputs[1],)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        hidden_states = hidden_states.transpose(1, 0)
        if not return_dict:
            outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
            return tuple(v for v in outputs if v is not None)

        return Mask2FormerMaskedAttentionDecoderOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=attentions,
            intermediate_hidden_states=intermediate,
            masks_queries_logits=intermediate_mask_predictions,
        )


def Mask2FormerTransformerModule_forward_first_part(
        self,
        multi_scale_features: List[Tensor],
        mask_features: Tensor,
        output_hidden_states: bool = False,
        output_attentions: bool = False,
    ) -> Mask2FormerMaskedAttentionDecoderOutput:
        multi_stage_features = []
        multi_stage_positional_embeddings = []
        size_list = []

        for i in range(self.num_feature_levels):
            size_list.append(multi_scale_features[i].shape[-2:])
            multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
            multi_stage_features.append(
                self.input_projections[i](multi_scale_features[i]).flatten(2)
                + self.level_embed.weight[i][None, :, None]
            )

            # Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
            multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
            multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)

        _, batch_size, _ = multi_stage_features[0].shape

        # [num_queries, batch_size, num_channels]
        query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
        query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)

        decoder_output = self.decoder.Mask2FormerMaskedAttentionDecoder_forward_first3layers(
            inputs_embeds=query_features,
            multi_stage_positional_embeddings=multi_stage_positional_embeddings,
            pixel_embeddings=mask_features,
            encoder_hidden_states=multi_stage_features,
            query_position_embeddings=query_embeddings,
            feature_size_list=size_list,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            return_dict=True,
        )

        return decoder_output


def Mask2FormerTransformerModule_forward_second_part(
        self,
        query_features: Tensor,
        query_embeddings: Tensor,
        multi_scale_features: List[Tensor],
        mask_features: Tensor,
        output_hidden_states: bool = False,
        output_attentions: bool = False,
    ) -> Mask2FormerMaskedAttentionDecoderOutput:
        multi_stage_features = []
        multi_stage_positional_embeddings = []
        size_list = []

        for i in range(self.num_feature_levels):
            size_list.append(multi_scale_features[i].shape[-2:])
            multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
            multi_stage_features.append(
                self.input_projections[i](multi_scale_features[i]).flatten(2)
                + self.level_embed.weight[i][None, :, None]
            )

            # Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
            multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
            multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)

        _, batch_size, _ = multi_stage_features[0].shape

        # [num_queries, batch_size, num_channels]
        # query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
        # query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)

        decoder_output = self.decoder.Mask2FormerMaskedAttentionDecoder_forward_last3layers(
            inputs_embeds=query_features,
            multi_stage_positional_embeddings=multi_stage_positional_embeddings,
            pixel_embeddings=mask_features,
            encoder_hidden_states=multi_stage_features,
            query_position_embeddings=query_embeddings,
            feature_size_list=size_list,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            return_dict=True,
        )

        return decoder_output


def Mask2FormerModel_forward_first_part(
        self,
        pixel_values: Tensor,
        pixel_mask: Optional[Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Mask2FormerModelOutput:
        r"""
        Returns:
            `Mask2FormerModelOutput`

        Examples:
        ```python
        >>> import torch
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoImageProcessor, Mask2FormerModel

        >>> # load image
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
        >>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
        >>> inputs = image_processor(image, return_tensors="pt")

        >>> # forward pass
        >>> with torch.no_grad():
        ...     outputs = model(**inputs)

        >>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
        >>> print(outputs.transformer_decoder_last_hidden_state.shape)
        torch.Size([1, 100, 256])
        ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        batch_size, _, height, width = pixel_values.shape

        if pixel_mask is None:
            pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)

        pixel_level_module_output = self.pixel_level_module(
            pixel_values=pixel_values, output_hidden_states=output_hidden_states
        )

        transformer_module_output = self.transformer_module.Mask2FormerTransformerModule_forward_first_part(
            multi_scale_features=pixel_level_module_output.decoder_hidden_states,
            mask_features=pixel_level_module_output.decoder_last_hidden_state,
            output_hidden_states=True,
            output_attentions=output_attentions,
        )

        query_features = transformer_module_output.last_hidden_state
        return query_features, pixel_level_module_output


def Mask2FormerModel_forward_second_part(
        self,
        query_features: Tensor,
        query_embeddings: Tensor,
        pixel_level_module_output,
        pixel_values: Tensor,
        pixel_mask: Optional[Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Mask2FormerModelOutput:
        r"""
        Returns:
            `Mask2FormerModelOutput`

        Examples:
        ```python
        >>> import torch
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoImageProcessor, Mask2FormerModel

        >>> # load image
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
        >>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
        >>> inputs = image_processor(image, return_tensors="pt")

        >>> # forward pass
        >>> with torch.no_grad():
        ...     outputs = model(**inputs)

        >>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
        >>> print(outputs.transformer_decoder_last_hidden_state.shape)
        torch.Size([1, 100, 256])
        ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        batch_size, _, height, width = pixel_values.shape

        if pixel_mask is None:
            pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)

        transformer_module_output = self.transformer_module.Mask2FormerTransformerModule_forward_second_part(
            query_features=query_features,
            query_embeddings=query_embeddings,
            multi_scale_features=pixel_level_module_output.decoder_hidden_states,
            mask_features=pixel_level_module_output.decoder_last_hidden_state,
            output_hidden_states=True,
            output_attentions=output_attentions,
        )

        encoder_hidden_states = None
        pixel_decoder_hidden_states = None
        transformer_decoder_hidden_states = None
        transformer_decoder_intermediate_states = None

        if output_hidden_states:
            encoder_hidden_states = pixel_level_module_output.encoder_hidden_states
            pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states
            transformer_decoder_hidden_states = transformer_module_output.hidden_states
            transformer_decoder_intermediate_states = transformer_module_output.intermediate_hidden_states

        output = Mask2FormerModelOutput(
            encoder_last_hidden_state=pixel_level_module_output.encoder_last_hidden_state,
            pixel_decoder_last_hidden_state=pixel_level_module_output.decoder_last_hidden_state,
            transformer_decoder_last_hidden_state=transformer_module_output.last_hidden_state,
            encoder_hidden_states=encoder_hidden_states,
            pixel_decoder_hidden_states=pixel_decoder_hidden_states,
            transformer_decoder_hidden_states=transformer_decoder_hidden_states,
            transformer_decoder_intermediate_states=transformer_decoder_intermediate_states,
            attentions=transformer_module_output.attentions,
            masks_queries_logits=transformer_module_output.masks_queries_logits,
        )

        if not return_dict:
            output = tuple(v for v in output.values() if v is not None)

        return output


def Mask2FormerForUniversalSegmentation_forward_first_part(
        self,
        pixel_values: Tensor,
        mask_labels: Optional[List[Tensor]] = None,
        class_labels: Optional[List[Tensor]] = None,
        pixel_mask: Optional[Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_auxiliary_logits: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Mask2FormerForUniversalSegmentationOutput:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        query_features, pixel_level_module_output = self.model.Mask2FormerModel_forward_first_part(
            pixel_values=pixel_values,
            pixel_mask=pixel_mask,
            output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
            output_attentions=output_attentions,
            return_dict=True,
        )

        return query_features, pixel_level_module_output


def Mask2FormerForUniversalSegmentation_forward_second_part(
        self,
        query_features,
        query_embeddings,
        pixel_level_module_output,
        text_classifier,
        pixel_values: Tensor,
        mask_labels: Optional[List[Tensor]] = None,
        class_labels: Optional[List[Tensor]] = None,
        pixel_mask: Optional[Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_auxiliary_logits: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Mask2FormerForUniversalSegmentationOutput:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model.Mask2FormerModel_forward_second_part(
            query_features=query_features,
            query_embeddings=query_embeddings,
            pixel_level_module_output=pixel_level_module_output,
            pixel_values=pixel_values,
            pixel_mask=pixel_mask,
            output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
            output_attentions=output_attentions,
            return_dict=True,
        )

        loss, loss_dict, auxiliary_logits = None, None, None
        class_queries_logits = ()

        for decoder_output in outputs.transformer_decoder_intermediate_states:
            class_prediction = self.ov_class_predictor(decoder_output.transpose(0, 1), text_classifier)
            # class_prediction = self.class_predictor(decoder_output.transpose(0, 1))
            class_queries_logits += (class_prediction,)

        masks_queries_logits = outputs.masks_queries_logits

        auxiliary_logits = self.get_auxiliary_logits(class_queries_logits, masks_queries_logits)

        if mask_labels is not None and class_labels is not None:
            loss_dict = self.get_loss_dict(
                masks_queries_logits=masks_queries_logits[-1],
                class_queries_logits=class_queries_logits[-1],
                mask_labels=mask_labels,
                class_labels=class_labels,
                auxiliary_predictions=auxiliary_logits,
            )
            loss = self.get_loss(loss_dict)

        encoder_hidden_states = None
        pixel_decoder_hidden_states = None
        transformer_decoder_hidden_states = None

        if output_hidden_states:
            encoder_hidden_states = outputs.encoder_hidden_states
            pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states
            transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states

        output_auxiliary_logits = (
            self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
        )
        if not output_auxiliary_logits:
            auxiliary_logits = None

        output = Mask2FormerForUniversalSegmentationOutput(
            loss=loss,
            class_queries_logits=class_queries_logits[-1],
            masks_queries_logits=masks_queries_logits[-1],
            auxiliary_logits=auxiliary_logits,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            pixel_decoder_last_hidden_state=outputs.pixel_decoder_last_hidden_state,
            transformer_decoder_last_hidden_state=outputs.transformer_decoder_last_hidden_state,
            encoder_hidden_states=encoder_hidden_states,
            pixel_decoder_hidden_states=pixel_decoder_hidden_states,
            transformer_decoder_hidden_states=transformer_decoder_hidden_states,
            attentions=outputs.attentions,
        )

        if not return_dict:
            output = tuple(v for v in output.values() if v is not None)
            if loss is not None:
                output = (loss) + output
        return output