File size: 17,338 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from collections import OrderedDict
from typing import Optional, Union, Tuple, List

import torch
import torch.nn as nn
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from transformers import (AutoTokenizer, BitsAndBytesConfig, LlavaForConditionalGeneration)
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
from xtuner.registry import BUILDER
from xtuner.model.utils import find_all_linear_names, get_peft_model_state_dict, guess_load_checkpoint, make_inputs_require_grad



class LLaVAModel(BaseModel):

    def __init__(self,
                 model_path,
                 freeze_llm=False,
                 freeze_visual_encoder=False,
                 llm_lora=None,
                 visual_encoder_lora=None,
                 quantization_vit=False,
                 quantization_llm=False,
                 pretrained_pth=None,
                 # Extra:
                 special_tokens=None,
                 ):
        super().__init__()
        self.freeze_llm = freeze_llm
        self.freeze_visual_encoder = freeze_visual_encoder
        self.use_llm_lora = llm_lora is not None
        self.use_visual_encoder_lora = visual_encoder_lora is not None
        self.quantization_vit = quantization_vit
        self.quantization_llm = quantization_llm
        if quantization_vit:
            assert visual_encoder_lora is not None
        if quantization_llm:
            assert quantization_llm and llm_lora is not None


        if quantization_vit is False and quantization_llm is False:
            quantization = None
        else:
            llm_int8_skip_modules = ['mlp1']
            if quantization_llm and not quantization_vit:
                llm_int8_skip_modules.append('vision_model')

            if quantization_vit and not quantization_llm:
                llm_int8_skip_modules.append('model')

            quantization_config = dict(
                type=BitsAndBytesConfig,
                llm_int8_skip_modules=llm_int8_skip_modules,
                load_in_4bit=True,
                load_in_8bit=False,
                llm_int8_threshold=6.0,
                llm_int8_has_fp16_weight=False,
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type='nf4')
            quantization_clazz = quantization_config.pop('type')
            quantization = quantization_clazz(**quantization_config)

        self.model = LlavaForConditionalGeneration.from_pretrained(
            model_path,
            torch_dtype=torch.bfloat16,
            quantization_config=quantization,
            trust_remote_code=True)

        tokenizer = AutoTokenizer.from_pretrained(
            model_path, trust_remote_code=True, use_fast=False
        )
        self.tokenizer = tokenizer
        if special_tokens is not None:
            self._add_special_tokens(special_tokens)

        if self.freeze_llm:
            self.model.language_model.requires_grad_(False)
        if self.freeze_visual_encoder:
            self.model.vision_tower.requires_grad_(False)

        if hasattr(self.model.language_model, 'enable_input_require_grads'):
            self.model.language_model.enable_input_require_grads()
        else:
            self.model.language_model.get_input_embeddings(
            ).register_forward_hook(make_inputs_require_grad)

        self.gradient_checkpointing_enable()

        if self.use_llm_lora:
            self._prepare_llm_for_lora(llm_lora)

        if self.use_visual_encoder_lora:
            self._prepare_visual_encoder_for_lora(visual_encoder_lora)

        if pretrained_pth is not None:
            pretrained_state_dict = guess_load_checkpoint(pretrained_pth)

            self.load_state_dict(pretrained_state_dict, strict=False)
            print(f'Load pretrained weight from {pretrained_pth}')

        self._count = 0


    def _add_special_tokens(self, special_tokens):
        num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)
        if num_new_tokens > 0:
            # ! important
            self.model.resize_token_embeddings(len(self.tokenizer))

    def _post_init(self, fast_pool_size=4, fast_pool=True):
        if fast_pool:
            self.fast_pool = nn.AdaptiveAvgPool2d((fast_pool_size, fast_pool_size))
        return

    def _parse_lora_config(self, lora_config):
        if isinstance(lora_config, dict) or isinstance(
                lora_config, Config) or isinstance(lora_config, ConfigDict):
            lora_config = BUILDER.build(lora_config)
        return lora_config

    def _prepare_llm_for_lora(self,
                              lora_config,
                              use_activation_checkpointing=True):
        lora_config = self._parse_lora_config(lora_config)
        self.model.language_model = prepare_model_for_kbit_training(
            self.model.language_model, use_activation_checkpointing)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.model.language_model)
            lora_config.target_modules = modules
        self.model.language_model = get_peft_model(self.model.language_model, lora_config)

    def _prepare_visual_encoder_for_lora(self, lora_config):
        lora_config = self._parse_lora_config(lora_config)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.model.vision_model)
            lora_config.target_modules = modules
        self.model.vision_model = get_peft_model(self.model.vision_model,
                                                 lora_config)

    def gradient_checkpointing_enable(self):
        self.activation_checkpointing_enable()

    def activation_checkpointing_enable(self):
        self.model.language_model.gradient_checkpointing_enable()

    def gradient_checkpointing_disable(self):
        self.activation_checkpointing_disable()

    def activation_checkpointing_disable(self):
        self.model.language_model.gradient_checkpointing_disable()

    def state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)
        to_return = OrderedDict()
        # Step 1. visual_encoder
        if self.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.model.vision_tower, state_dict=state_dict))
        elif not self.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'model.vision_tower.' in k
            })
        # Step 2. LLM
        if self.use_llm_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.model.language_model, state_dict=state_dict))
        elif not self.freeze_llm:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'model.language_model.' in k
            })
        # Step 3. Projector
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'model.multi_modal_projector.' in k})
        return to_return

    def init_weights(self):
        pass

    def forward(self, data, data_samples=None, mode='loss'):
        pixel_values = data['pixel_values']
        input_ids = data['input_ids']
        position_ids = data['position_ids']
        attention_mask = data['attention_mask']

        labels = data['labels']
        use_cache = False

        # for lora
        outputs = self._llm_forward(input_ids=input_ids,
                                    attention_mask=attention_mask,
                                    position_ids=position_ids,
                                    pixel_values=pixel_values,
                                    labels=labels,
                                    use_cache=use_cache,
                                    output_hidden_states=True,
                                    )
        return outputs


    def _llm_forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        vision_feature_layer: Optional[int] = None,
        vision_feature_select_strategy: Optional[str] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, LlavaForConditionalGeneration

        >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
        >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")

        >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=prompt, images=image, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "USER:  \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.model.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.model.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.model.config.use_return_dict
        vision_feature_layer = (
            vision_feature_layer if vision_feature_layer is not None else self.model.config.vision_feature_layer
        )
        vision_feature_select_strategy = (
            vision_feature_select_strategy
            if vision_feature_select_strategy is not None
            else self.model.config.vision_feature_select_strategy
        )

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            inputs_embeds = self.model.get_input_embeddings()(input_ids)

            # 2. Merge text and images
            if pixel_values is not None and input_ids.shape[1] != 1:
                if type(pixel_values) is list:
                    pixel_values = [
                        x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
                    ]
                    pixel_values = torch.cat(
                        [image.to(self.model.vision_tower.dtype) for image in pixel_values], dim=0)
                else:
                    _bs, _n_img, _, _h, _w = pixel_values.shape
                    pixel_values = pixel_values.flatten(0, 1).to(self.model.vision_tower.dtype)
                image_outputs = self.model.vision_tower(pixel_values, output_hidden_states=True)
                # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
                selected_image_feature = image_outputs.hidden_states[vision_feature_layer].to(pixel_values.dtype)

                if vision_feature_select_strategy == "default":
                    selected_image_feature = selected_image_feature[:, 1:]
                elif vision_feature_select_strategy == "full":
                    selected_image_feature = selected_image_feature
                else:
                    raise ValueError(
                        f"Unexpected select feature strategy: {self.model.config.vision_feature_select_strategy}"
                    )

                image_features = self.model.multi_modal_projector(selected_image_feature)
                num_images, num_image_patches, embed_dim = image_features.shape
                image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0
                image_flags = image_flags.long()
                image_features = image_features[image_flags == 1]
                real_num_images = image_features.shape[0]

                inputs_embeds = inputs_embeds.to(image_features.dtype)
                batch_size, sequence_length = input_ids.shape
                _input_ids = input_ids.reshape(batch_size * sequence_length)
                _inputs_embeds = inputs_embeds.reshape(batch_size * sequence_length, embed_dim)
                selected = (_input_ids == self.model.config.image_token_index)
                assert selected.sum() == real_num_images * num_image_patches

                _inputs_embeds[selected] = image_features.reshape(real_num_images * num_image_patches, embed_dim)
                inputs_embeds = _inputs_embeds.reshape(batch_size, sequence_length, embed_dim)

            # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
            # generation with cache
            elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
                # Retrieve the first layer to inspect the logits and mask out the hidden states
                # that are set to 0
                first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)

                # Get the target length
                target_length = input_ids.shape[1]
                past_length = first_layer_past_key_value.shape[-1]

                extended_attention_mask = torch.ones(
                    (attention_mask.shape[0], past_length),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )

                # Filter out only the tokens that can be un-attended, this can happen
                # if one uses Llava + Fused modules where the cache on the
                # first iteration is already big enough, or if one passes custom cache
                valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                new_batch_index = batch_index[valid_indices]
                new_non_attended_tokens = non_attended_tokens[valid_indices]

                # Zero-out the places where we don't need to attend
                extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0

                attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1

        outputs = self.model.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                shift_attention_mask = attention_mask[..., 1:]
                shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return LlavaCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )