File size: 9,879 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import os.path as osp
import re
import string

import numpy as np
import pandas as pd
from mmengine.dist import (master_only)
from rich.console import Console
from rich.table import Table
from .base_eval_dataset import BaseEvalDataset

from xtuner.dataset.utils import decode_base64_to_image
from xtuner.registry import BUILDER
from mmengine.logging import print_log
from .utils import custom_data_process

def MMMU_preproc(data):
    cnt = 0
    As, Bs, Ans = list(data['A']), list(data['B']), list(data['answer'])
    lt = len(data)
    for i in range(lt):
        if pd.isna(As[i]):
            As[i] = Ans[i]
            Bs[i] = 'Other Answers'
            cnt += 1
    print_log(f'During MMMU_preproc in Evaluation, {cnt} open questions are re-formulated to multi-choice ones. ', 'current')
    data['A'] = As
    data['B'] = Bs
    return data


class MultipleChoiceDataset(BaseEvalDataset):
    # 'mmbench', 'seedbench', 'ccbench', 'mmmu', 'scienceqa', 'ai2d'
    METAINFO: dict = dict(name='multiple_choice')

    def __init__(self, data_file, image_processor,
                 pad_image_to_square=True,
                 metainfo=None,
                 ori_image=False
    ):
        super().__init__(metainfo)
        self.data_file = data_file
        self.df = pd.read_csv(data_file, sep='\t')

        if 'MMMU' in os.path.basename(data_file):
            self.df = MMMU_preproc(self.df)
        self.split = 'dev' if 'answer' in self.df.iloc[0].keys() else 'test'
        self.has_l2_category = 'l2-category' in self.df.columns.to_list()

        self.image_processor = BUILDER.build(image_processor)
        self.pad_image_to_square = pad_image_to_square
        self.name = os.path.splitext(os.path.basename(data_file))[0]
        self.results_xlsx_path = os.path.splitext(os.path.basename(data_file))[0] + '-results.xlsx'
        self.data = self.load_data_list()
        self.ori_image = ori_image

    def get_image(self, image):
        while len(image) < 16:
            image = self.df[self.df['index'] == int(image)]['image'].values
            assert len(image) == 1
            image = image[0]
        image = decode_base64_to_image(image)
        return image

    def __len__(self):
        return len(self.df)

    def load_data_list(self):
        data_list = []
        for idx in range(len(self.df)):
            index = self.df.iloc[idx]['index']
            image = self.df.iloc[idx]['image']
            question = self.df.iloc[idx]['question']
            answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[
                0].keys() else None
            category = self.df.iloc[idx]['category']
            split = self.df.iloc[idx]['split'] if 'split' in self.df.iloc[
                0].keys() else None

            options = {
                cand: self.load_from_df(idx, cand)
                for cand in string.ascii_uppercase
                if self.load_from_df(idx, cand) is not None
            }
            options_prompt = ''
            for key, item in options.items():
                options_prompt += f'{key}. {item}\n'

            hint = self.load_from_df(idx, 'hint')
            data = {
                'img': image,
                'question': question,
                'answer': answer,
                'options': options_prompt,
                'category': category,
                'options_dict': options,
                'index': index,
                'context': hint,
                'img_id': idx
            }
            if split is not None:
                data['split'] = split

            if self.has_l2_category:
                data.update({'l2-category': self.df.iloc[idx]['l2-category']})
            data_list.append(data)
        return data_list

    def __getitem__(self, idx):
        data = self.data[idx]
        data_dict = custom_data_process(self, data, return_ori_image=self.ori_image)
        return data_dict

    def load_from_df(self, idx, key):
        if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
            return self.df.iloc[idx][key]
        else:
            return None

    @master_only
    def evaluate(self, results, work_dir):

        def calc_acc(df, split, group='category'):
            assert group in ['overall', 'category', 'l2-category']
            if group == 'overall':
                if split is None:
                    res = {'Average': np.mean(df['hit'])}
                else:
                    res = {'Average': np.mean(df[df['split'] == split]['hit'])}
            else:
                res = {}
                abilities = list(set(df[group]))
                abilities.sort()
                for ab in abilities:
                    sub_df = df[df[group] == ab]
                    if split is None:
                        res[ab] = np.mean(sub_df['hit'])
                    else:
                        res[ab] = np.mean(sub_df[sub_df['split'] == split]['hit'])
            return res

        def eval_sub_data(sub_data, answer_map):
            lt = len(sub_data)
            for i in range(lt):
                item = sub_data.iloc[i]
                match = re.search(r'([A-D]+)', item['prediction'])
                pred = match.group(1) if match else ''
                gt = answer_map[item['index']]
                if gt != pred:
                    return 0
            return 1

        def show_result(ret_json, split):
            show_dict = ret_json.copy()
            table = Table(title=f' Multiple Choice ({self.data_file}) ')
            console = Console()
            if split is not None:
                table.add_column(f'Category ({split})', justify='left')
            else:
                table.add_column('Category', justify='left')
            table.add_column('Accuracy (%)', justify='right')
            average = show_dict.pop('Average') * 100
            table.add_row('Average', f'{average:.1f}')
            table.add_section()
            for cat_name, cat_acc in show_dict.items():
                table.add_row(cat_name, f'{cat_acc * 100:.1f}')
            with console.capture() as capture:
                console.print(table, end='')
            print_log('\n' + capture.get(), 'current')
            print_log('Note: Please be cautious if you use the results in papers, '
                      "since we don't use ChatGPT as a helper for choice "
                      'extraction', 'current')

        orig_index = [x['img_id'] for x in self.data]
        new_results = []
        for pred_dict in results:
            index = pred_dict['img_id']
            new_index = orig_index.index(index)
            filtered_rows = self.data[new_index]

            cur_result = {}
            cur_result['question'] = filtered_rows.get('question')
            cur_result.update(filtered_rows.get('options_dict'))
            cur_result['prediction'] = pred_dict['prediction']
            if filtered_rows.get('category') is not None:
                cur_result['category'] = filtered_rows.get('category')
            if filtered_rows.get('l2-category') is not None:
                cur_result['l2-category'] = filtered_rows.get('l2-category')
            cur_result['index'] = filtered_rows.get('index')
            cur_result['split'] = filtered_rows.get('split')
            cur_result['answer'] = filtered_rows.get('answer')
            new_results.append(cur_result)

        results_df = pd.DataFrame(new_results)
        with pd.ExcelWriter(osp.join(work_dir, self.results_xlsx_path), engine='openpyxl') as writer:
            results_df.to_excel(writer, index=False)

        if self.split != 'dev':
            print_log('Test set does not have answers, skip evaluation', 'current')
            return {'Average': 0}

        data = results_df.sort_values(by='index')
        data['prediction'] = [str(x) for x in data['prediction']]
        for k in data.keys():
            data[k.lower() if k not in 'ABCD' else k] = data.pop(k)

        data_main = data[data['index'] < int(1e6)]
        cate_map = {
            i: c
            for i, c in zip(self.df['index'], self.df['category'])
        }
        if self.has_l2_category:
            l2_cate_map = {
                i: c
                for i, c in zip(self.df['index'], self.df['l2-category'])
            }
        answer_map = {
            i: c
            for i, c in zip(self.df['index'], self.df['answer'])
        }

        lt = len(data_main)
        hit, tot = 0, 0
        result = {}
        for i in range(lt):
            item_main = data_main.iloc[i]
            idx = item_main['index']
            assert idx not in result
            sub_data = data[data['index'] % int(1e6) == idx]
            ret = eval_sub_data(sub_data, answer_map)
            result[idx] = ret
            hit += ret
            tot += 1

        indices = data_main['index']
        data_main = data_main.copy()
        data_main['hit'] = [result[i] for i in indices]
        main_idx = data_main['index']
        data_main['category'] = [cate_map[i] for i in main_idx]

        if 'split' in data_main:
            splits = list(set(data_main['split']))
        else:
            splits = [None]

        for split in splits:
            ret_json = calc_acc(data_main, split, 'overall')

            if self.has_l2_category:
                data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
                l2 = calc_acc(data_main, split, 'l2-category')
                ret_json.update(l2)

            leaf = calc_acc(data_main, split, 'category')
            ret_json.update(leaf)

            print_log('============================================', 'current')
            show_result(ret_json,split)
        print_log('============================================', 'current')
        print_log('Multiple Choice successfully finished evaluating' 'current')
        return ret_json