File size: 39,858 Bytes
032e687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 |
import os
from pycocotools import mask as mask_util
import json
import numpy as np
import cv2
from distinctipy import distinctipy
import matplotlib.pyplot as plt
from PIL import Image
from types import MethodType
import json
import random
import sys
import torch
import torchvision
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks, PolygonMasks
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data.detection_utils import read_image
from fvcore.common.timer import Timer
from third_parts.APE.build_ape import build_ape_predictor
from third_parts.recognize_anything.build_ram_plus import build_ram_predictor
from third_parts.segment_anything import build_sam_vit_h, SamPredictor, SamAutomaticMaskGenerator
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def sample_points(box, mask, min_points=3, max_points=16):
x0, y0, w, h = box
aspect_ratio = w / h
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_points, max_points + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_points and i * j >= min_points)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, w, h, 50)
width_bin = w / target_aspect_ratio[0]
height_bin = h / target_aspect_ratio[1]
ret_points = []
for wi in range(target_aspect_ratio[0]):
xi = x0 + (wi+0.5) * width_bin
for hi in range(target_aspect_ratio[1]):
yi = y0 + (hi+0.5) * height_bin
if mask[int(yi), int(xi)] > 0:
ret_points.append((xi, yi))
# if len(ret_points) < min_points:
temp_points = []
for wi in range(int(x0), int(x0+w)):
for hi in range(int(y0), int(y0+h)):
if mask[int(hi), int(wi)] > 0:
temp_points.append((wi, hi))
if len(temp_points)//max_points < 1:
uniform_indices = list(range(0, len(temp_points)))
else:
uniform_indices = list(range(0, len(temp_points), len(temp_points)//max_points))
additional_points = [temp_points[uniform_idx] for uniform_idx in uniform_indices[1:-1]]
# ret_points = [temp_points[uniform_indices[1]], temp_points[uniform_indices[2]], temp_points[uniform_indices[3]]]
ret_points = ret_points + additional_points
return ret_points
def mask_iou(masks, chunk_size=50, chunk_mode=False):
masks1 = masks.unsqueeze(1).char() # n, 1, h, w
masks2 = masks.unsqueeze(0).char() # 1, n, h, w
if not chunk_mode:
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
return intersection, union
def chunk_mask_iou(_chunk_size=50):
num_chunks = masks1.shape[0] // _chunk_size
if masks1.shape[0] % _chunk_size > 0:
num_chunks += 1
row_chunks_intersection, row_chunks_union = [], []
for row_idx in range(num_chunks):
col_chunks_intersection, col_chunks_union = [], []
masks1_chunk = masks1[row_idx*_chunk_size:(row_idx+1)*_chunk_size]
for col_idx in range(num_chunks):
masks2_chunk = masks2[:, col_idx*_chunk_size:(col_idx+1)*_chunk_size]
try:
intersection = masks1_chunk * masks2_chunk
temp_sum = masks1_chunk + masks2_chunk
union = (temp_sum - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
except torch.cuda.OutOfMemoryError:
return False, None, None
col_chunks_intersection.append(intersection)
col_chunks_union.append(union)
row_chunks_intersection.append(torch.cat(col_chunks_intersection, dim=1))
row_chunks_union.append(torch.cat(col_chunks_union, dim=1))
intersection = torch.cat(row_chunks_intersection, dim=0)
union = torch.cat(row_chunks_union, dim=0)
return True, intersection, union
for c_size in [chunk_size, chunk_size//2, chunk_size//4]:
is_ok, intersection, union = chunk_mask_iou(c_size)
if not is_ok:
continue
return intersection, union
def mask_iou_v2(masks1, masks2, chunk_size=50, chunk_mode=False):
masks1 = masks1.unsqueeze(1).char() # n, 1, h, w
masks2 = masks2.unsqueeze(0).char() # 1, m, h, w
if not chunk_mode:
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
return intersection, union
def chunk_mask_iou(_chunk_size=50):
num_chunks1 = masks1.shape[0] // _chunk_size
if masks1.shape[0] % _chunk_size > 0:
num_chunks1 += 1
num_chunks2 = masks2.shape[1] // _chunk_size
if masks2.shape[0] % _chunk_size > 0:
num_chunks2 += 1
row_chunks_intersection, row_chunks_union = [], []
for row_idx in range(num_chunks1):
col_chunks_intersection, col_chunks_union = [], []
masks1_chunk = masks1[row_idx*_chunk_size:(row_idx+1)*_chunk_size]
for col_idx in range(num_chunks2):
masks2_chunk = masks2[:, col_idx*_chunk_size:(col_idx+1)*_chunk_size]
try:
intersection = masks1_chunk * masks2_chunk
temp_sum = masks1_chunk + masks2_chunk
union = (temp_sum - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
except torch.cuda.OutOfMemoryError:
return False, None, None
col_chunks_intersection.append(intersection)
col_chunks_union.append(union)
row_chunks_intersection.append(torch.cat(col_chunks_intersection, dim=1))
row_chunks_union.append(torch.cat(col_chunks_union, dim=1))
intersection = torch.cat(row_chunks_intersection, dim=0)
union = torch.cat(row_chunks_union, dim=0)
return True, intersection, union
for c_size in [chunk_size, chunk_size//2, chunk_size//4]:
is_ok, intersection, union = chunk_mask_iou(c_size)
if not is_ok:
continue
return intersection, union
return intersection, union
def mask_area(masks, chunk_size=50, chunk_mode=False):
if not chunk_mode:
return masks.sum(-1).sum(-1)
num_chunks = masks.shape[0] // chunk_size
if masks.shape[0] % chunk_size > 0:
num_chunks += 1
areas = []
for i in range(num_chunks):
masks_i = masks[i*chunk_size:(i+1)*chunk_size]
areas.append(masks_i.sum(-1).sum(-1))
return torch.cat(areas, dim=0)
from detectron2.utils.visualizer import GenericMask
import matplotlib.colors as mplc
def draw_instance_predictions_cache(self, labels, np_masks, jittering: bool = True):
"""
Draw instance-level prediction results on an image.
Args:
predictions (Instances): the output of an instance detection/segmentation
model. Following fields will be used to draw:
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
jittering: if True, in color mode SEGMENTATION, randomly jitter the colors per class
to distinguish instances from the same class
Returns:
output (VisImage): image object with visualizations.
"""
boxes = None
scores = None
classes = None
keypoints = None
masks = [GenericMask(x, self.output.height, self.output.width) for x in np_masks]
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
colors = (
[self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes]
if jittering
else [
tuple(mplc.to_rgb([x / 255 for x in self.metadata.thing_colors[c]]))
for c in classes
]
)
alpha = 0.8
else:
colors = None
alpha = 0.5
self.overlay_instances(
masks=masks,
boxes=boxes,
labels=labels,
keypoints=keypoints,
assigned_colors=colors,
alpha=alpha,
)
return self.output
def merge_sa1b_image(image_file, anno_file, save_path, generated_annos, visualize=False):
file_name = os.path.basename(image_file).split('.')[0]
if anno_file is not None:
with open(anno_file, 'r') as f:
json_results = json.load(f)
generated_annos = json_results["annotations"]
assert generated_annos is not None, "Provide valid annotation file or generated_annos from sam automatic generator."
_all_sam_masks, predicted_iou_scores = [], []
for object_anno in generated_annos:
object_mask = object_anno["segmentation"]
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
mask = mask_util.decode(object_mask)
mask = mask.astype(np.uint8).squeeze()
_all_sam_masks.append(torch.from_numpy(mask))
predicted_iou_scores.append(object_anno['predicted_iou'])
#TODO sorted the masks list according to the iou score from high to low
sorted_idx = sorted(range(len(predicted_iou_scores)), key=lambda k: predicted_iou_scores[k], reverse=True)
all_sam_masks = []
for idx in sorted_idx:
all_sam_masks.append(_all_sam_masks[idx])
all_sam_masks = torch.stack(all_sam_masks)
ori_height, ori_width = all_sam_masks.shape[-2:]
downsampled_sam_masks = torch.nn.functional.interpolate(all_sam_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_sam_masks = (downsampled_sam_masks[0] > 0.5).to(all_sam_masks.dtype).to("cuda")
intersection, union = mask_iou(downsampled_sam_masks, chunk_size=100, chunk_mode=True)
mask_iou_matrix = intersection / union
# nms
num_instances = len(mask_iou_matrix)
keep = [True] * num_instances
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(ins_i, num_instances):
if ins_j == ins_i:
continue
if mask_iou_matrix[ins_i, ins_j] > 0.8:
keep[ins_j] = False
# merge
# area = downsampled_sam_masks.sum(-1).sum(-1)
area = mask_area(downsampled_sam_masks, chunk_mode=True, chunk_size=100)
roc = intersection / area[:, None]
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(num_instances):
if ins_i == ins_j:
continue
if not keep[ins_j]:
continue
if roc[ins_i, ins_j] > 0.8:
keep[ins_i] = False
break
left_masks = [all_sam_masks[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
left_tags = ['object' for _ in range(len(left_masks))]
unique_tags = list(set(left_tags))
text_prompt = ','.join(unique_tags)
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
metadata.thing_classes = unique_tags
metadata.stuff_classes = unique_tags
if not visualize:
return torch.stack(left_masks)
def run_on_image_v2(image_file, anno_file, save_path, ram_predictor, ape_predictor, sam_predictor, sam_auto_mask_generator, visualize=False):
if not os.path.exists(image_file):
return None
file_name = os.path.basename(image_file).split('.')[0]
if (anno_file is None) or (not os.path.exists(anno_file)):
image = cv2.imread(image_file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
generated_annos = sam_auto_mask_generator.generate(image)
sam_masks = merge_sa1b_image(image_file, None, save_path, generated_annos, visualize=False)
else:
sam_masks = merge_sa1b_image(image_file, anno_file, save_path, None, visualize=False)
ape_masks, ape_tags = run_on_image(image_file, save_path, ram_predictor, ape_predictor, sam_predictor, visualize=False)
if ape_masks is None:
return None
sam_image = cv2.imread(image_file)
ori_height, ori_width = sam_image.shape[:2]
sam_image = cv2.cvtColor(sam_image, cv2.COLOR_BGR2RGB)
sam_predictor.set_image(sam_image) # has been set in the `run_on_image` function
ori_height, ori_width = sam_masks.shape[-2:]
downsampled_sam_masks = torch.nn.functional.interpolate(sam_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_sam_masks = (downsampled_sam_masks[0] > 0.5).to(sam_masks.dtype).to("cuda")
downsampled_ape_masks = torch.nn.functional.interpolate(ape_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_ape_masks = (downsampled_ape_masks[0] > 0.5).to(ape_masks.dtype).to("cuda")
sam_ape_masks_intersection, sam_ape_masks_union = mask_iou_v2(downsampled_sam_masks, downsampled_ape_masks, chunk_size=100, chunk_mode=True)
sam_ape_masks_iou = sam_ape_masks_intersection / sam_ape_masks_union
# sam_area = downsampled_sam_masks.sum(-1).sum(-1)
sam_area = mask_area(downsampled_sam_masks, chunk_mode=True, chunk_size=100)
sam_masks_roc = sam_ape_masks_intersection / sam_area[:, None]
sam_boxes = torchvision.ops.masks_to_boxes(sam_masks)
ape_boxes = torchvision.ops.masks_to_boxes(ape_masks)
first_round_masks = []
iou_target_indices = torch.argmax(sam_ape_masks_iou, dim=1)
roc_target_indices = torch.argmax(sam_masks_roc, dim=1)
for sam_idx in range(downsampled_sam_masks.shape[0]):
iou_tgt_idx = iou_target_indices[sam_idx]
roc_tgt_idx = roc_target_indices[sam_idx]
if sam_ape_masks_iou[sam_idx, iou_tgt_idx] > 0.8:
first_round_masks.append(sam_masks[sam_idx])
elif sam_masks_roc[sam_idx, roc_tgt_idx] > 0.8:
# sam mask inside ape mask
box_x1, box_y1, box_x2, box_y2 = sam_boxes[sam_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], sam_masks[sam_idx], min_points=1, max_points=3)
if len(ret_points) == 0 :
first_round_masks.append(sam_masks[sam_idx])
else:
point_labels = [1 for _ in range(len(ret_points))]
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array(ret_points),
point_labels=np.array(point_labels),
multimask_output=True,
)
temp_masks = torch.from_numpy(temp_masks)
downsampled_temp_masks = torch.nn.functional.interpolate(temp_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_temp_masks = (downsampled_temp_masks[0] > 0.5).to(temp_masks.dtype).to("cuda")
downsampled_ape_mask = downsampled_ape_masks[roc_tgt_idx][None]
ape_temp_masks_intersection, ape_temp_masks_union = mask_iou_v2(downsampled_ape_mask, downsampled_temp_masks)
ape_temp_masks_iou = ape_temp_masks_intersection / ape_temp_masks_union
iou_temp_indices = torch.argmax(ape_temp_masks_iou, dim=1)
iou_temp_idx = iou_temp_indices[0]
if ape_temp_masks_iou[0, iou_temp_idx] > 0.8 and scores[iou_temp_idx] > 0.9:
first_round_masks.append(temp_masks[iou_temp_idx])
else:
first_round_masks.append(sam_masks[sam_idx])
else:
# first_round_masks.append(sam_masks[sam_idx])
box_x1, box_y1, box_x2, box_y2 = sam_boxes[sam_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], sam_masks[sam_idx], min_points=1, max_points=3)
if len(ret_points) == 0:
first_round_masks.append(sam_masks[sam_idx])
else:
point_labels = [1 for _ in range(len(ret_points))]
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array(ret_points),
point_labels=np.array(point_labels),
multimask_output=True,
)
temp_masks = torch.from_numpy(temp_masks)
temp_masks_area = temp_masks.sum(-1).sum(-1)
tgt_idx = torch.argmax(temp_masks_area)
if scores[tgt_idx] > 0.9:
first_round_masks.append(temp_masks[tgt_idx])
else:
first_round_masks.append(sam_masks[sam_idx])
ape_sam_masks_intersection, ape_sam_masks_union = sam_ape_masks_intersection.transpose(0, 1), sam_ape_masks_union.transpose(0, 1)
# ape_area = ape_masks.sum(-1).sum(-1)
ape_area = mask_area(downsampled_ape_masks, chunk_mode=True, chunk_size=100)
ape_masks_roc = ape_sam_masks_intersection / ape_area[:, None]
roc_target_indices = torch.argmax(ape_masks_roc, dim=1)
for ape_idx in range(ape_masks.shape[0]):
roc_tgt_idx = roc_target_indices[ape_idx]
if ape_masks_roc[ape_idx, roc_tgt_idx] < 0.2:
if sam_masks_roc[roc_tgt_idx, ape_idx] < 0.2:
box_x1, box_y1, box_x2, box_y2 = ape_boxes[ape_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], ape_masks[ape_idx], min_points=3, max_points=16)
if len(ret_points) == 0:
first_round_masks.append(ape_masks[ape_idx])
else:
point_labels = [1 for _ in range(len(ret_points))]
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array(ret_points),
point_labels=np.array(point_labels),
multimask_output=False,
)
temp_masks = torch.from_numpy(temp_masks)
if scores[0] > 0.9:
first_round_masks.append(temp_masks[0])
else:
first_round_masks.append(ape_masks[ape_idx])
else:
# some sam masks inside ape masks, but they are not in object-level
box_x1, box_y1, box_x2, box_y2 = ape_boxes[ape_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], ape_masks[ape_idx], min_points=3, max_points=8)
for point in ret_points:
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array([point]),
point_labels=np.array([1]),
multimask_output=True,
)
temp_masks = torch.from_numpy(temp_masks)
downsampled_temp_masks = torch.nn.functional.interpolate(temp_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_temp_masks = (downsampled_temp_masks[0] > 0.5).to(temp_masks.dtype).to("cuda")
downsampled_ape_mask = downsampled_ape_masks[ape_idx][None]
ape_temp_masks_intersection, ape_temp_masks_union = mask_iou_v2(downsampled_ape_mask, downsampled_temp_masks)
ape_temp_masks_iou = ape_temp_masks_intersection / ape_temp_masks_union
iou_temp_indices = torch.argmax(ape_temp_masks_iou, dim=1)
iou_temp_idx = iou_temp_indices[0]
if ape_temp_masks_iou[0, iou_temp_idx] > 0.8:
first_round_masks.append(ape_masks[ape_idx])
# first_round_scores = [mask.sum(-1).sum(-1) for mask in first_round_masks]
first_round_scores = mask_area(torch.stack(first_round_masks), chunk_mode=True, chunk_size=100)
sorted_idx = sorted(range(len(first_round_masks)), key=lambda k: first_round_scores[k], reverse=True)
sorted_first_round_masks = []
for idx in sorted_idx:
sorted_first_round_masks.append(first_round_masks[idx])
sorted_first_round_masks = torch.stack(sorted_first_round_masks)
downsampled_first_round_masks = torch.nn.functional.interpolate(sorted_first_round_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_first_round_masks = (downsampled_first_round_masks[0] > 0.5).to(sorted_first_round_masks.dtype)
intersection, union = mask_iou(downsampled_first_round_masks, chunk_mode=True, chunk_size=100)
mask_iou_matrix = intersection / union
# nms
num_instances = len(mask_iou_matrix)
keep = [True] * num_instances
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(ins_i, num_instances):
if ins_j == ins_i:
continue
if mask_iou_matrix[ins_i, ins_j] > 0.8:
keep[ins_j] = False
# merge
# area = downsampled_first_round_masks.sum(-1).sum(-1)
area = mask_area(downsampled_first_round_masks, chunk_mode=True, chunk_size=100)
roc = intersection / area[:, None]
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(num_instances):
if ins_i == ins_j:
continue
if not keep[ins_j]:
continue
if roc[ins_i, ins_j] > 0.5:
keep[ins_i] = False
break
left_masks = [sorted_first_round_masks[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
if visualize:
left_tags = ['object' for _ in range(len(left_masks))]
unique_tags = list(set(left_tags))
text_prompt = ','.join(unique_tags)
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
metadata.thing_classes = unique_tags
metadata.stuff_classes = unique_tags
result_masks = torch.stack(left_masks).cpu().numpy()
input_image = read_image(image_file, format="BGR")
visualizer = Visualizer(input_image[:, :, ::-1], metadata, instance_mode=ColorMode.IMAGE)
visualizer.draw_instance_predictions = MethodType(draw_instance_predictions_cache, visualizer)
vis_output = visualizer.draw_instance_predictions(labels=left_tags, np_masks=result_masks)
output_image = vis_output.get_image()
output_image = Image.fromarray(output_image)
final_out_path = "./work_dirs/visualize_object_level"
if not os.path.exists(final_out_path):
os.makedirs(final_out_path)
output_image.save(os.path.join(final_out_path, file_name+'.jpg'))
else:
result_masks = torch.stack(left_masks).cpu().numpy()
save_json_results = []
for ins_i, mask in enumerate(result_masks):
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
save_json_results.append({
"ins_id": ins_i,
"segmentation": rle,
})
with open(os.path.join(save_path, file_name+'.json'), 'w') as f:
json.dump(save_json_results, f)
def run_on_image(image_file, save_path, ram_predictor, ape_predictor, sam_predictor, visualize=False):
res = ram_predictor.run_on_image(image_file_path=image_file, dynamic_resolution=True)
tag_list = []
for tag_string in res[0]:
tags = tag_string.split(' | ')
tag_list += tags
tags = list(set(tag_list))
text_prompt = ','.join(tags)
output_image, json_results = ape_predictor.run_on_image(
image_file,
input_text=text_prompt,
visualize=True,
score_threhold=0.1,
output_type=["instance segmentation"],
)
if visualize:
file_name = os.path.basename(image_file).split('.')[0]
raw_ape_out_path = os.path.join(save_path, 'raw_ape_out_0116')
if not os.path.exists(raw_ape_out_path):
os.makedirs(raw_ape_out_path)
output_image.save(os.path.join(raw_ape_out_path, file_name+'.jpg'))
# sam segment
# colors = distinctipy.get_colors(len(json_results)+1)
sam_image = cv2.imread(image_file)
ori_height, ori_width = sam_image.shape[:2]
sam_image = cv2.cvtColor(sam_image, cv2.COLOR_BGR2RGB)
sam_predictor.set_image(sam_image)
new_masks_from_sam = []
correspondding_tags = []
correspondding_scores = [] # the scores has been sorted inside the APE
for idx, item in enumerate(json_results):
object_mask = item["segmentation"]
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
mask = mask_util.decode(object_mask)
mask = mask.astype(np.uint8).squeeze()
box = item["bbox"]
ret_points = sample_points(box, mask)
if len(ret_points) == 0:
continue
mask_h, mask_w = object_mask["size"]
input_point, input_label = [], []
for point in ret_points:
_x = point[0] / mask_w * ori_width
_y = point[1] / mask_h * ori_height
input_point.append([int(_x), int(_y)])
input_label.append(1)
masks, scores, logits = sam_predictor.predict(
point_coords=np.array(input_point),
point_labels=np.array(input_label),
multimask_output=False
)
new_masks_from_sam.append(torch.from_numpy(masks))
correspondding_tags.append(item["category_name"])
correspondding_scores.append(item["score"])
if len(new_masks_from_sam) == 0:
return None, None
new_masks_from_sam = torch.cat(new_masks_from_sam)
downsampled_new_masks_from_sam = torch.nn.functional.interpolate(new_masks_from_sam[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_new_masks_from_sam = (downsampled_new_masks_from_sam[0] > 0.5).to(new_masks_from_sam.dtype).to("cuda")
intersection, union = mask_iou(downsampled_new_masks_from_sam, chunk_mode=True, chunk_size=100)
mask_iou_matrix = intersection / union
# nms
num_instances = len(mask_iou_matrix)
keep = [True] * num_instances
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(ins_i, num_instances):
if ins_j == ins_i:
continue
if mask_iou_matrix[ins_i, ins_j] > 0.8:
keep[ins_j] = False
# merge
# area = downsampled_new_masks_from_sam.sum(-1).sum(-1)
area = mask_area(downsampled_new_masks_from_sam, chunk_mode=True, chunk_size=100)
roc = intersection / area[:, None]
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(num_instances):
if ins_i == ins_j:
continue
if not keep[ins_j]:
continue
if roc[ins_i, ins_j] > 0.8:
keep[ins_i] = False
break
left_masks = [new_masks_from_sam[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
left_masks = torch.stack(left_masks)
left_boxes = torchvision.ops.masks_to_boxes(left_masks)
left_tags = [correspondding_tags[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
# zoom in
result_mask_list = []
result_tag_list = []
ori_image = Image.open(image_file)
for ins_i, ins_box in enumerate(left_boxes):
ins_box = ins_box.numpy().tolist()
box_w = ins_box[2] - ins_box[0]
box_h = ins_box[3] - ins_box[1]
loose_box_x0 = int(ins_box[0] - box_w // 4)
loose_box_y0 = int(ins_box[1] - box_h // 4)
loose_box_x1 = int(ins_box[2] + box_w // 4)
loose_box_y1 = int(ins_box[3] + box_h // 4)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
loose_box_w = loose_box_x1 - loose_box_x0
loose_box_h = loose_box_y1 - loose_box_y0
assert loose_box_w >= box_w and loose_box_h >= box_h
if loose_box_w < 256:
padded_length_w = 256 - loose_box_w
left_padded = padded_length_w // 2
right_padded = padded_length_w - left_padded
if loose_box_x0 - left_padded < 0:
right_padded = right_padded + left_padded - loose_box_x0
left_padded = loose_box_x0
if loose_box_x1 + right_padded > ori_width:
left_padded = left_padded + loose_box_x1 + right_padded - ori_width
right_padded = ori_width - loose_box_x1
loose_box_x0 = int(loose_box_x0 - left_padded)
loose_box_x1 = int(loose_box_x1 + right_padded)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
if loose_box_h < 256:
padded_length_h = 256 - loose_box_h
top_padded = padded_length_h // 2
bottom_padded = padded_length_h - top_padded
if loose_box_y0 - top_padded < 0:
bottom_padded = bottom_padded + top_padded - loose_box_y0
top_padded = loose_box_y0
if loose_box_y1 + bottom_padded > ori_height:
top_padded = top_padded + loose_box_y1 + bottom_padded - ori_height
bottom_padded = ori_height - loose_box_y1
loose_box_y0 = int(loose_box_y0 - top_padded)
loose_box_y1 = int(loose_box_y1 + bottom_padded)
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
loose_box_w = loose_box_x1 - loose_box_x0
loose_box_h = loose_box_y1 - loose_box_y0
if loose_box_w > loose_box_h:
padded_length_h = loose_box_w - loose_box_h
top_padded = padded_length_h // 2
bottom_padded = padded_length_h - top_padded
if loose_box_y0 - top_padded < 0:
bottom_padded = bottom_padded + top_padded - loose_box_y0
top_padded = loose_box_y0
if loose_box_y1 + bottom_padded > ori_height:
top_padded = top_padded + loose_box_y1 + bottom_padded - ori_height
bottom_padded = ori_height - loose_box_y1
loose_box_y0 = int(loose_box_y0 - top_padded)
loose_box_y1 = int(loose_box_y1 + bottom_padded)
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
elif loose_box_h > loose_box_w:
padded_length_w = loose_box_h - loose_box_w
left_padded = padded_length_w // 2
right_padded = padded_length_w - left_padded
if loose_box_x0 - left_padded < 0:
right_padded = right_padded + left_padded - loose_box_x0
left_padded = loose_box_x0
if loose_box_x1 + right_padded > ori_width:
left_padded = left_padded + loose_box_x1 + right_padded - ori_width
right_padded = ori_width - loose_box_x1
loose_box_x0 = int(loose_box_x0 - left_padded)
loose_box_x1 = int(loose_box_x1 + right_padded)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
image_patch = ori_image.crop((loose_box_x0, loose_box_y0, loose_box_x1, loose_box_y1))
image_patch_w, image_patch_h = image_patch.size
res = ram_predictor.run_on_image(image_file_path=image_patch, dynamic_resolution=False)
tag_list = []
for tag_string in res[0]:
tags = tag_string.split(' | ')
tag_list += tags
tags = list(set(tag_list))
text_prompt = ','.join(tags)
if image_patch_w > image_patch_h:
rescaled_image_patch_w = 1024
rescaled_image_patch_h = int(image_patch_h / image_patch_w * 1024)
else:
rescaled_image_patch_h = 1024
rescaled_image_patch_w = int(image_patch_w / image_patch_h * 1024)
image_patch = image_patch.resize((rescaled_image_patch_w, rescaled_image_patch_h))
output_image, json_results = ape_predictor.run_on_image(
image_patch,
input_text=text_prompt,
visualize=True,
score_threhold=0.1,
output_type=["instance segmentation"],
)
all_masks, all_tags = [], []
for idx, item in enumerate(json_results):
object_mask = item["segmentation"]
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
mask = mask_util.decode(object_mask)
mask = torch.as_tensor(mask.astype(np.uint8))
all_masks.append(mask)
all_tags.append(item['category_name'])
# if len(all_masks) == 0:
# continue
if len(all_masks) == 0:
result_mask_list.append(left_masks[ins_i])
result_tag_list.append(left_tags[ins_i])
continue
all_masks = torch.stack(all_masks)
all_masks_ori_size = torch.nn.functional.interpolate(all_masks.unsqueeze(0), size=(image_patch_h, image_patch_w),
mode='bilinear')
all_masks_ori_size = all_masks_ori_size > 0.4
ori_mask_crop = left_masks[ins_i, loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1]
# mask iou
masks1 = ori_mask_crop[None, None, :, :].char().to('cuda')
masks2 = all_masks_ori_size.char().to('cuda')
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
area = masks2.sum(-1).sum(-1)
# area = mask_area(masks2, chunk_mode=True)
masks_iou = intersection / union
target_idx = torch.argmax(masks_iou, dim=1)
if masks_iou[0, target_idx] < 0.8:
temp_result_mask_list = []
temp_result_tag_list = []
for ins_j, mask_j_iou in enumerate(masks_iou[0]):
if mask_j_iou < 0.1:
continue
roc_j = intersection[0, ins_j] / area[0, ins_j]
if roc_j < 0.8:
continue
result_mask = torch.zeros((ori_height, ori_width)).to(all_masks.dtype)
result_mask[loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1] = all_masks_ori_size[0, ins_j]
temp_result_mask_list.append(result_mask)
temp_result_tag_list.append(all_tags[ins_j])
if len(temp_result_mask_list) > 1:
result_mask_list.extend(temp_result_mask_list)
result_tag_list.extend(temp_result_tag_list)
else:
result_mask_list.append(left_masks[ins_i])
result_tag_list.append(left_tags[ins_i])
else:
result_mask = torch.zeros((ori_height, ori_width)).to(all_masks.dtype)
result_mask[loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1] = all_masks_ori_size[0, target_idx.item()]
result_mask_list.append(result_mask)
result_tag_list.append(all_tags[target_idx])
unique_tags = list(set(result_tag_list))
text_prompt = ','.join(unique_tags)
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
metadata.thing_classes = unique_tags
metadata.stuff_classes = unique_tags
if not visualize:
return torch.stack(result_mask_list), result_tag_list
def main(node_id=0, local_rank=0, work_dir="./work_dirs/object_level"):
global_rank_id = int(node_id * 8 + local_rank)
task_file = f"./work_dirs/object_level_task/rank{global_rank_id}.json"
if not os.path.exists(task_file):
print(f"No task file:{task_file}")
return None
with open(task_file, 'r') as f:
sam_images = json.load(f)
ram_predictor = build_ram_predictor(override_ckpt_file="third_parts/recognize_anything/xinyu1205/recognize-anything-plus-model/ram_plus_swin_large_14m.pth")
ape_predictor = build_ape_predictor(which_categories='COCO',
override_ckpt_file="third_parts/APE/shenyunhang/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl_20230829_162438/model_final.pth")
sam = build_sam_vit_h("third_parts/zhouyik/zt_any_visual_prompt/sam_vit_h_4b8939.pth")
sam.to(device="cuda")
sam_predictor = SamPredictor(sam)
sam_auto_mask_generator = SamAutomaticMaskGenerator(sam)
timer = Timer()
past_time = 0
total_images = len(sam_images)
for idx, sam_image_file in enumerate(sam_images):
image_name = os.path.basename(sam_image_file).split('.')[0]
dir_name = os.path.dirname(sam_image_file)
sam_anno_file = os.path.join(dir_name, image_name+".json")
save_dir = os.path.join(work_dir, os.path.basename(dir_name))
if os.path.exists(os.path.join(save_dir, image_name+'.json')):
continue
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if random.random() < 0.3:
visualize=True
else:
visualize=False
run_on_image_v2(sam_image_file, sam_anno_file, save_dir,
ram_predictor, ape_predictor, sam_predictor, sam_auto_mask_generator, visualize=visualize)
consume_time = "%.2f" % (timer.seconds() - past_time)
past_time = timer.seconds()
print(f"RANK#{local_rank}: {idx+1}/{total_images}, comsume {consume_time} seconds.")
if __name__ == "__main__":
work_dir, local_rank, node_id = sys.argv[1:]
main(node_id=node_id, local_rank=local_rank, work_dir=work_dir)
|