File size: 35,876 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
import copy
from collections import OrderedDict
import torch
import torch.nn as nn
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training

from xtuner.registry import BUILDER
from .modules import ProjectorConfig_OMG_LLaVA, ProjectorModel_OMG_LLaVA
from xtuner.model.modules import ProjectorModel, ProjectorConfig
from xtuner.model.modules import dispatch_modules
from .utils import (LoadWoInit, find_all_linear_names,
                    get_peft_model_state_dict, guess_load_checkpoint,
                    make_inputs_require_grad,
                    traverse_dict,
                    prepare_inputs_labels_for_multimodal_with_visual_prompts)
from .convnext_clip import OpenCLIPBackbone
from .omg_seg import OMGSegVisualEncoder

from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
                          PROMPT_TEMPLATE)
from xtuner.tools.utils import get_stop_criteria, is_cn_string
from transformers import GenerationConfig
import torch.nn.functional as F
import numpy as np
from pycocotools import mask as _mask

class OMG_LLaVA(BaseModel):
    def __init__(self,
                 llm,
                 visual_encoder,
                 visual_select_layer=-2,
                 freeze_llm=False,
                 freeze_visual_encoder=False,
                 require_omg_decoder=False,
                 pretrained_pth=None,
                 llm_lora=None,
                 visual_encoder_lora=None,
                 use_activation_checkpointing=True,
                 projector_depth=2,
                 text2vision_projector=False,
                 tokenizer=None,
                 keep_omg_decoder_frozen=False,
                 add_seg_pretrain=False,
                 additional_cross_attn_layers=False,
                 pixel_shuffle_ratio=None,
                 train_vocabulary=False,
                 freeze_llm_with_lora=False,
                 freeze_visual_projector=False,
                 rm_prior_embedding=False,
                 rm_query=False,
                 clip_feat_channel=1536,
                 ):
        super().__init__()

        self.freeze_llm_with_lora = freeze_llm_with_lora
        self.freeze_visual_projector = freeze_visual_projector

        self.freeze_llm = freeze_llm
        self.freeze_visual_encoder = freeze_visual_encoder
        with LoadWoInit():
            self.llm = self._build_from_cfg_or_module(llm)
            if visual_encoder.type == OpenCLIPBackbone or visual_encoder.type == OMGSegVisualEncoder:
                self.visual_encoder = visual_encoder.type(**visual_encoder)
            else:
                self.visual_encoder = self._build_from_cfg_or_module(
                    visual_encoder)
        self.llm.config.use_cache = False
        dispatch_modules(self.llm)

        projector_config = ProjectorConfig_OMG_LLaVA(
            query_channels=256,
            feat_channels=clip_feat_channel,
            llm_hidden_size=self.llm.config.hidden_size,
            depth=projector_depth,
            pixel_shuffle_ratio=pixel_shuffle_ratio,
        )
        self.projector = ProjectorModel_OMG_LLaVA(projector_config).to(
            self.visual_encoder.dtype)

        self.text2vision_projector = text2vision_projector
        if text2vision_projector:
            projector_config = ProjectorConfig(
                visual_hidden_size=self.llm.config.hidden_size,
                llm_hidden_size=256 * 2,
                depth=projector_depth)
            self.projector_text2vision = ProjectorModel(projector_config).to(
                self.visual_encoder.dtype)

        if rm_query:
            self.projector.model.rm_query = rm_query
        if rm_prior_embedding:
            self.projector.model.rm_prior_embedding = rm_prior_embedding

        if self.freeze_llm:
            self.llm.requires_grad_(False)
        if self.freeze_visual_encoder:
            self.visual_encoder.requires_grad_(False)

        self.use_activation_checkpointing = use_activation_checkpointing
        if use_activation_checkpointing:
            # For backward compatibility
            if hasattr(self.llm, 'enable_input_require_grads'):
                self.llm.enable_input_require_grads()
            else:
                self.llm.get_input_embeddings().register_forward_hook(
                    make_inputs_require_grad)
            if hasattr(self.visual_encoder, 'enable_input_require_grads'):
                self.visual_encoder.enable_input_require_grads()
            else:
                self.visual_encoder.get_input_embeddings(
                ).register_forward_hook(make_inputs_require_grad)
            self.projector.enable_input_require_grads()
            if text2vision_projector:
                self.projector_text2vision.enable_input_require_grads()

            # enable gradient (activation) checkpointing for memory efficiency
            self.gradient_checkpointing_enable()

        # resize input embed before add llm lora
        self.added_special_token = False
        if tokenizer is not None:
            self.tokenizer = tokenizer
            tokenizer_type = self.tokenizer['type']
            del self.tokenizer['type']
            self.tokenizer = tokenizer_type(**self.tokenizer)
            self._add_special_tokens()

        self.use_llm_lora = llm_lora is not None
        self.use_visual_encoder_lora = visual_encoder_lora is not None

        if self.use_llm_lora:
            self._prepare_llm_for_lora(llm_lora, use_activation_checkpointing)
            if self.freeze_llm_with_lora:
                for name, param in self.llm.named_parameters():
                    param.requires_grad_(False)
        else:
            if train_vocabulary:
                # train vocabulary embedding and logit head when pretrain
                for name, param in self.named_parameters():
                    if ('tok_' in name or 'embed_tokens' in name) or 'lm_head' in name:
                        print("Unfrozen {} !!!".format(name))
                        param.requires_grad_(True)
                    if ('output.' in name or 'lm_head' in name) and 'llm' in name and 'lora' not in name:
                        print("Unfrozen {} !!!".format(name))
                        param.requires_grad_(True)

        if self.use_visual_encoder_lora:
            self._prepare_visual_encoder_for_lora(
                visual_encoder_lora, use_activation_checkpointing)

        if pretrained_pth is not None:
            pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
            self.load_state_dict(pretrained_state_dict, strict=False)
            print(f'Load pretrained weight from {pretrained_pth}')

        self.visual_select_layer = visual_select_layer

        self._is_init = True

        self.require_omg_decoder = require_omg_decoder
        if require_omg_decoder:
            self.visual_encoder.init_new_decoder()
            if keep_omg_decoder_frozen:
                for name, param in self.visual_encoder.panoptic_head.transformer_decoder_llm.named_parameters():
                    param.requires_grad_(False)
                print("Frozen all the omg seg decoder !!!")

        self.additional_cross_attn_layers = additional_cross_attn_layers
        if self.additional_cross_attn_layers:
            self.visual_encoder.init_cross_attn_layer()

        if self.freeze_visual_projector:
            for name, param in self.projector.named_parameters():
                param.requires_grad_(False)

        self.add_seg_pretrain = add_seg_pretrain
        self.init_prediction_config = False


    def _add_special_tokens(self):
        assert hasattr(self, "tokenizer")

        segmentation_tokens = ['[SEG]']
        # Adding tokens for GCG
        phrase_tokens = ['<p>', '</p>']
        # add for visual prompt
        region_tokens = ['<region>']
        point_tokens = ['<mark>']
        special_tokens = segmentation_tokens + phrase_tokens + region_tokens
        self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
        self.bop_token_idx = self.tokenizer("<p>", add_special_tokens=False).input_ids[0]
        self.eop_token_idx = self.tokenizer("</p>", add_special_tokens=False).input_ids[0]
        self.region_token_idx = self.tokenizer("<region>", add_special_tokens=False).input_ids[0]

        self.llm.resize_token_embeddings(len(self.tokenizer))

        self.tokenizer.add_tokens(point_tokens, special_tokens=True)
        self.mark_token_idx = self.tokenizer("<mark>", add_special_tokens=False).input_ids[0]
        if self.use_activation_checkpointing or self.use_llm_lora or not self.freeze_llm:
            self.llm.enable_input_require_grads()
        self.added_special_token = True
        print("[SEG]: {}, <p>: {}, </p>: {}, <region>: {}, <mark>: {}" \
              .format(self.seg_token_idx, self.bop_token_idx,
                      self.eop_token_idx, self.region_token_idx, self.mark_token_idx))
        print('****************************Add special tokens ********************************************')
        return

    def _parse_lora_config(self, lora_config):
        if isinstance(lora_config, dict) or isinstance(
                lora_config, Config) or isinstance(lora_config, ConfigDict):
            lora_config = BUILDER.build(lora_config)
        return lora_config

    def _prepare_llm_for_lora(self,
                              lora_config,
                              use_activation_checkpointing=True):
        lora_config = self._parse_lora_config(lora_config)
        self.llm = prepare_model_for_kbit_training(
            self.llm, use_activation_checkpointing)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.llm)
            lora_config.target_modules = modules
        self.llm = get_peft_model(self.llm, lora_config)
        for name, param in self.named_parameters():
            if 'tok_' in name or 'lm_head' in name:
                print("Unfrozen {} !!!".format(name))
                param.requires_grad_(True)
            if 'output.' in name and 'llm' in name and 'lora' not in name:
                print("Unfrozen {} !!!".format(name))
                param.requires_grad_(True)

    def _prepare_visual_encoder_for_lora(self,
                                         lora_config,
                                         use_activation_checkpointing=True):
        lora_config = self._parse_lora_config(lora_config)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.visual_encoder)
            lora_config.target_modules = modules
        self.visual_encoder = get_peft_model(self.visual_encoder, lora_config)

    def gradient_checkpointing_enable(self):
        self.activation_checkpointing_enable()

    def activation_checkpointing_enable(self):
        self.llm.gradient_checkpointing_enable()
        if hasattr(self.visual_encoder, 'gradient_checkpointing_enable'):
            self.visual_encoder.gradient_checkpointing_enable()
        elif hasattr(self.visual_encoder, 'clip_model'):
            if self.visual_encoder.clip_model is not None:
                self.visual_encoder.clip_model.gradient_checkpointing_enable()
        if hasattr(self.projector, 'gradient_checkpointing_enable'):
            self.projector.gradient_checkpointing_enable()
        if self.text2vision_projector and hasattr(self.projector_text2vision, 'gradient_checkpointing_enable'):
            self.projector_text2vision.gradient_checkpointing_enable()

    def gradient_checkpointing_disable(self):
        self.activation_checkpointing_disable()

    def activation_checkpointing_disable(self):
        self.llm.gradient_checkpointing_disable()
        if hasattr(self.visual_encoder, 'gradient_checkpointing_disable'):
            self.visual_encoder.gradient_checkpointing_disable()
        if hasattr(self.projector, 'gradient_checkpointing_disable'):
            self.projector.gradient_checkpointing_disable()
        if self.text2vision_projector and hasattr(self.projector_text2vision, 'gradient_checkpointing_disable'):
            self.projector_text2vision.gradient_checkpointing_disable()

    def init_weights(self):
        pass

    def state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)

        to_return = OrderedDict()

        # vocabulary embedding
        to_return.update(
            {k: v for k, v in state_dict.items() if 'tok_' in k or 'embed_tokens' in k}
        )
        # logit head
        to_return.update(
            {k: v for k, v in state_dict.items() if ('output.' in k or 'lm_head' in k) and 'llm' in k and 'lora' not in k}
        )

        # Step 1. visual_encoder
        if self.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.visual_encoder, state_dict=state_dict))
        elif not self.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'visual_encoder.' in k
            })
        # Step 2. LLM
        if self.use_llm_lora:
            to_return.update(
                get_peft_model_state_dict(self.llm, state_dict=state_dict))
        elif not self.freeze_llm:
            to_return.update(
                {k: v
                 for k, v in state_dict.items() if 'llm.' in k})
        # Step 3. Projector
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'projector.' in k})
        # projector text2vision
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'projector_text2vision' in k})

        # visual_encoder.adapter_proj
        if self.freeze_visual_encoder:
            to_return.update(
                {k: v
                for k, v in state_dict.items() if 'visual_encoder.adapter_proj' in k})

        # git_clip lora
        if hasattr(self.visual_encoder, 'clip_model'):
            if self.visual_encoder.clip_lora is not None:
                to_return.update(
                    get_peft_model_state_dict(self.visual_encoder.clip_model,
                                              state_dict=state_dict))
        # omg decoder for llm
        if self.require_omg_decoder:
            to_return.update(
                {k: v
                for k, v in state_dict.items()
                if 'visual_encoder.panoptic_head.transformer_decoder_llm' in k or
                   'visual_encoder.panoptic_head.mask_embed_llm' in k or
                   'visual_encoder.panoptic_head.pixel_decoder_llm' in k or
                   'visual_encoder.panoptic_head.additional_cross_attn_layers' in k or
                   'visual_encoder.panoptic_head.additional_ffn' in k or
                   'visual_encoder.downsample_layer' in k
                 })

        return to_return

    def _build_from_cfg_or_module(self, cfg_or_mod):
        if isinstance(cfg_or_mod, nn.Module):
            return cfg_or_mod
        elif isinstance(cfg_or_mod, dict):
            traverse_dict(cfg_or_mod)
            return BUILDER.build(cfg_or_mod)
        else:
            raise NotImplementedError

    def forward(self, data, data_samples=None, mode='loss'):
        if 'pixel_values' in data:
            if 'masks' in data:
                masks = data['masks']
                del data['masks']
            else:
                masks = None
            if 'regions' in data:
                regions = data['regions']
                del data['regions']
            else:
                regions = None
            if 'points' in data:
                points = data['points']
                del data['points']
            else:
                points = None

            visual_outputs = self.visual_encoder(
                data['pixel_values'].to(self.visual_encoder.dtype),
                output_hidden_states=True)

            if self.add_seg_pretrain:
                pred_obj_query, gt_obj_query = prepare_seg_pretrain_data(
                    visual_outputs,
                    [self.projector.model.query_proj, self.projector.model.model],
                    self.projector_text2vision.model
                )

            if isinstance(visual_outputs, list) or isinstance(visual_outputs, tuple)\
                    or isinstance(visual_outputs, torch.Tensor):
                pixel_values = self.projector(visual_outputs)
            else:
                pixel_values = self.projector(
                    visual_outputs.hidden_states[self.visual_select_layer][:, 1:])

            if regions is not None:
                region_embeddings, region_success = self.get_region_embeddings(
                    regions, data['input_ids'],
                )
                none_region_embeddings = region_embeddings
                del regions
            else:
                region_success = True
                region_embeddings = []
                none_region_embeddings = self.get_none_region_embeddings(
                    input_ids=data['input_ids'],
                )

            if points is not None:
                points_mark_embedding, mark_success = self.get_points_embeddings(
                    points, data['input_ids'],
                    width=data['pixel_values'].shape[-1],
                    height=data['pixel_values'].shape[-2],
                )
                none_points_mark_embedding = points_mark_embedding
            else:
                none_points_mark_embedding = self.get_none_points_embeddings(
                    data['input_ids'],
                    width=data['pixel_values'].shape[-1],
                    height=data['pixel_values'].shape[-2],
                )
                points_mark_embedding = []
                mark_success = True

            data['pixel_values'] = pixel_values
            data = prepare_inputs_labels_for_multimodal_with_visual_prompts(
                llm=self.llm, region_id=self.region_token_idx,
                regions_feats=region_embeddings,
                mark_id=self.mark_token_idx,
                mark_feats=points_mark_embedding,
                **data)
        else:
            masks = None

        _zero = none_points_mark_embedding.sum() * 0.0 + none_region_embeddings.sum() * 0.0

        if mode == 'loss':
            if self.add_seg_pretrain:
                return self.compute_loss(data, data_samples, masks=masks, region_success=region_success,
                                         pred_gt_obj_query=(pred_obj_query, gt_obj_query),
                                         mark_success=mark_success, _zero=_zero)
            else:
                return self.compute_loss(data, data_samples, masks=masks,
                                         pred_gt_obj_query=None,
                                         region_success=region_success,
                                         mark_success=mark_success,
                                         _zero=_zero)
        elif mode == 'predict':
            return self.predict(data, data_samples)
        elif mode == 'tensor':
            return self._forward(data, data_samples)
        else:
            raise NotImplementedError

    def _forward(self, data, data_samples=None):

        outputs = self.llm(**data)

        return outputs

    def predict(self, data, data_samples=None):
        outputs = self.llm(**data)
        logits_dict = [{'logits': logits} for logits in outputs.logits]
        return logits_dict

    def compute_loss(self, data, data_samples=None, masks=None, pred_gt_obj_query=None,
                     region_success=True, mark_success=True, _zero=0):
        if 'original_labels' in data.keys():
            input_ids = data['original_labels']
            del data['original_labels']
        else:
            input_ids = data['labels']
        outputs = self.llm(**data, output_hidden_states=True)

        loss_dice, loss_mask = self.compute_seg_loss(
            input_ids, outputs.hidden_states[-1], masks)

        if pred_gt_obj_query is not None:
            pred_obj_query, gt_obj_query = pred_gt_obj_query
            proj_loss = torch.mean((pred_obj_query - gt_obj_query) ** 2) * 10
        else:
            proj_loss = 0

        if not region_success:
            loss = outputs.loss * 0
        else:
            loss = outputs.loss

        if not mark_success:
            loss = outputs.loss * 0

        # loss = loss + self.get_visual_prompts_projector_zero() + _zero
        loss = loss + _zero

        loss_dict = {'loss': loss, 'loss_dice': outputs.loss* 0 + loss_dice * 0.1,
                     'loss_mask': outputs.loss * 0 + loss_mask * 0.4,
                     'loss_proj': outputs.loss * 0 + proj_loss}
        return loss_dict

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.llm, name)

    def get_region_embeddings(self, regions, input_ids):
        success = True
        if regions is None or len(regions) == 0:
            return [], success
        else:
            region_token_mask = input_ids == self.region_token_idx
            batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(
                input_ids.device)
            batch_idxs = batch_idxs[region_token_mask]  # (N, ) batch_size number
            if len(regions) != len(batch_idxs):
                # There is a bug !!! skip it.
                success = False
                if len(regions) > len(batch_idxs):
                    regions = regions[:len(batch_idxs)]
                else:
                    n_pad = len(batch_idxs) - len(regions)
                    pad_region = regions[:1].repeat(n_pad, 1, 1)
                    regions = torch.cat([pad_region, regions])

            regions_embeddings = self.visual_encoder.forward_region_sam(
                regions, batch_idxs
            )[:, 0]  # (N, C)

            regions_embeddings = self.projector.model.forward_visual_prompts_embeddings(
                regions_embeddings, batch_idxs)
            return regions_embeddings, success  # (N, C)

    def get_none_region_embeddings(self, input_ids):
        batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(
            input_ids.device)
        batch_idxs = batch_idxs[0, :1]  # (N, ) batch_size number

        regions = torch.ones((1, 50, 50)).to(torch.float32).to(input_ids.device)

        regions_embeddings = self.visual_encoder.forward_region_sam(
            regions, batch_idxs
        )[:, 0]  # (N, C)

        regions_embeddings = self.projector.model.forward_visual_prompts_embeddings(
            regions_embeddings, batch_idxs)
        return regions_embeddings

    def get_points_embeddings(self, points, input_ids, width, height):
        success = True
        if points is None or len(points) == 0:
            return []

        mark_token_mask = input_ids == self.mark_token_idx
        batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(
            input_ids.device)
        batch_idxs = batch_idxs[mark_token_mask]  # (N, ) batch_size number

        if len(points) != len(batch_idxs):
            # There is a bug !!! skip it.
            success = False
            if len(points) > len(batch_idxs):
                points = points[:len(batch_idxs)]
            else:
                n_pad = len(batch_idxs) - len(points)
                pad_region = points[:1].repeat(n_pad, 1, 1)
                points = torch.cat([pad_region, points])

        marks_embeddings = self.visual_encoder.forward_point_sam(
            points, batch_idxs, width=width, height=height
        )[:, 0]  # (N, C)

        marks_embeddings = self.projector.model.forward_visual_prompts_embeddings(
            marks_embeddings, batch_idxs)
        return marks_embeddings, success  # (N, C)

    def get_none_points_embeddings(self, input_ids, width, height):
        batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(
            input_ids.device)
        batch_idxs = batch_idxs[0, :1]  # (N, ) batch_size number

        marks_embeddings = self.visual_encoder.forward_point_sam(
            torch.zeros((1, 2)).to(input_ids), batch_idxs, width=width, height=height
        )[:, 0]  # (N, C)

        marks_embeddings = self.projector.model.forward_visual_prompts_embeddings(
            marks_embeddings, batch_idxs)
        return marks_embeddings  # (N, C)

    def get_visual_prompts_projector_zero(self):
        return self.projector.model.visual_prompt_zero

    def compute_seg_loss(self, input_ids, hidden_states, gt_masks):
        if not self.text2vision_projector or self.add_seg_pretrain:
            return 0.0, 0.0
        success = True
        if gt_masks is None or len(gt_masks) == 0:
            batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(
                input_ids.device)
            batch_idxs = batch_idxs[0, :1]  # (N, ) batch_size number
            gt_masks = [None]
            hidden_states = hidden_states[0, :1]
            hidden_states = self.projector_text2vision(hidden_states)  # (N, C)

            pred_masks_list = self.visual_encoder.forward_llm_seg(hidden_states, batch_idxs)
            dice_loss, mask_loss = self.visual_encoder.loss_llm_seg(pred_masks_list, gt_masks)

            return dice_loss * 0.0, mask_loss * 0.0


        seg_tokens_mask = input_ids == self.seg_token_idx
        batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(seg_tokens_mask.device)

        ori_hidden_states = hidden_states
        hidden_states = hidden_states[seg_tokens_mask]
        batch_idxs = batch_idxs[seg_tokens_mask]  # (N, ) batch_size number

        if len(hidden_states) != len(gt_masks) or len(hidden_states) == 0:
            # drop this batch
            print("Drop the batch because the number of [SEG] and masks not equal !!!")
            hidden_states = ori_hidden_states
            batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(
                input_ids.device)
            batch_idxs = batch_idxs[0, :1]  # (N, ) batch_size number
            gt_masks = [None]
            hidden_states = hidden_states[0, :1]
            hidden_states = self.projector_text2vision(hidden_states)  # (N, C)

            pred_masks_list = self.visual_encoder.forward_llm_seg(hidden_states, batch_idxs)
            dice_loss, mask_loss = self.visual_encoder.loss_llm_seg(pred_masks_list, gt_masks)

            return dice_loss * 0.0, mask_loss * 0.0

        assert len(hidden_states) == len(gt_masks), "expect [seg] number equal to mask number, but get {} [seg] and {} masks".format(len(hidden_states), len(gt_masks))
        hidden_states = self.projector_text2vision(hidden_states)  # (N, C)

        pred_masks_list = self.visual_encoder.forward_llm_seg(hidden_states, batch_idxs)
        dice_loss, mask_loss = self.visual_encoder.loss_llm_seg(pred_masks_list, gt_masks)

        if not success:
            return dice_loss * 0.0, mask_loss * 0.0

        return dice_loss, mask_loss

    def preparing_for_generation(self, metainfo, **kwargs):
        # set stop criteria and generation configs for model
        assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!"
        self.bot_name = 'BOT'
        if 'template' in metainfo.keys():
            template = metainfo['template']
        else:
            template = PROMPT_TEMPLATE['internlm2_chat']
        self.template = template
        stop_words = []
        stop_words += template.get('STOP_WORDS', [])
        stop_criteria = get_stop_criteria(
            tokenizer=self.tokenizer, stop_words=stop_words)
        self.stop_criteria = stop_criteria

        default_generation_kwargs = dict(
            max_new_tokens=2048,
            do_sample=False,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=(
                self.tokenizer.pad_token_id
                if self.tokenizer.pad_token_id is not None
                else self.tokenizer.eos_token_id
            ),
        )
        default_generation_kwargs.update(metainfo.get('generation_kwargs', {}))
        self.gen_config = GenerationConfig(**default_generation_kwargs)
        self.init_prediction_config = True

        self.llm.to(self.visual_encoder.dtype)
        self.visual_encoder.to(self.visual_encoder.dtype)
        self.projector.to(self.visual_encoder.dtype)
        self.projector_text2vision.to(self.visual_encoder.dtype)
        return

    def predict_forward(
            self, pixel_values, text_prompts,
            ori_image_size=None,
            box_prompts=None, points_prompts=None, mask_prompts=None, **kwargs):
        # pixel_values: image tensor
        # text_prompts: question without template
        assert self.init_prediction_config, "Please set prediction configs using self.preparing_for_generation()"

        ret_predictions = []
        ret_masks = []

        image = pixel_values.cuda().unsqueeze(0).to(self.visual_encoder.dtype)
        visual_outputs = self.visual_encoder(image, output_hidden_states=True)
        if isinstance(visual_outputs, list) or isinstance(visual_outputs, tuple) \
                or isinstance(visual_outputs, torch.Tensor):
            pixel_values = self.projector(visual_outputs)
        else:
            pixel_values = self.projector(
                visual_outputs.hidden_states[self.visual_select_layer][:, 1:])

        if isinstance(text_prompts, str):
            text_prompts = [text_prompts]
        for text_prompt in text_prompts:
            # add template for text
            input_text = ''
            input_text += self.template['INSTRUCTION'].format(
                input=text_prompt, round=1, bot_name=self.bot_name)

            chunk_encode = []
            for idx, chunk in enumerate(input_text.split(DEFAULT_IMAGE_TOKEN)):
                if idx == 0:
                    cur_encode = self.tokenizer.encode(chunk)
                else:
                    cur_encode = self.tokenizer.encode(chunk, add_special_tokens=False)
                chunk_encode.append(cur_encode)
            assert len(chunk_encode) == 2
            ids = []
            for idx, cur_chunk_encode in enumerate(chunk_encode):
                ids.extend(cur_chunk_encode)
                if idx != len(chunk_encode) - 1:
                    ids.append(IMAGE_TOKEN_INDEX)
            ids = torch.tensor(ids).cuda().unsqueeze(0)

            mm_inputs = prepare_inputs_labels_for_multimodal_with_visual_prompts(
                llm=self.llm, input_ids=ids, pixel_values=pixel_values,
                region_id=self.region_token_idx,
                regions_feats=[],
                mark_id=self.mark_token_idx,
                mark_feats=[],
            )

            generate_output = self.llm.generate(
                **mm_inputs,
                generation_config=self.gen_config,
                streamer=None,
                bos_token_id=self.tokenizer.bos_token_id,
                stopping_criteria=self.stop_criteria,
                output_hidden_states=True,
                return_dict_in_generate=True
            )
            predict = self.tokenizer.decode(
                generate_output.sequences[0], skip_special_tokens=True).strip()
            ret_predictions.append(predict)

            if ori_image_size is not None and 'masks' in kwargs.keys():
                hidden_states = generate_output.hidden_states
                last_hidden_states = [item[-1][0] for item in hidden_states]
                last_hidden_states = torch.cat(last_hidden_states, dim=0)
                seg_hidden_states = get_seg_hidden_states(
                    last_hidden_states, generate_output.sequences[0][:-1],
                    seg_id=self.seg_token_idx
                )

                if len(seg_hidden_states) == 0:
                    print("Warning, no [SEG] tokens !!!")
                    ret_masks.append(None)
                    continue
                elif len(seg_hidden_states) > 1:
                    print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states)))
                    seg_hidden_states = seg_hidden_states[:1]
                seg_hidden_states = self.projector_text2vision(seg_hidden_states)
                batch_idxs = torch.zeros((seg_hidden_states.shape[0],),
                                         dtype=torch.int64).to(seg_hidden_states.device)
                pred_masks_list = self.visual_encoder.forward_llm_seg(seg_hidden_states, batch_idxs)
                pred_masks = pred_masks_list[-1]
                w, h = copy.deepcopy(ori_image_size)
                masks = F.interpolate(pred_masks, size=(max(w, h), max(w, h)),
                                      mode='bilinear', align_corners=False)
                masks = masks[:, 0]
                # remove padding
                if w == h:
                    pass
                elif w > h:
                    n_pad = w - h
                    n_pad_1 = n_pad // 2
                    n_pad_2 = n_pad - n_pad_1
                    masks = masks[:, n_pad_1: w - n_pad_2]
                else:
                    n_pad = h - w
                    n_pad_1 = n_pad // 2
                    n_pad_2 = n_pad - n_pad_1
                    masks = masks[:, :, n_pad_1: h - n_pad_2]
                # binary
                masks = masks.sigmoid() > 0.5
                masks = masks.int()
                ret_masks.append(masks)

        if len(ret_predictions) == 1:
            ret_predictions = ret_predictions[0]
        if len(ret_masks) == 0:
            return {'prediction': ret_predictions}

        _ret_masks = []
        for i, ret_mask in enumerate(ret_masks):
            if ret_mask is None:
                _ret_masks.append(None)
            else:
                ret_mask = ret_mask.cpu().numpy()
                _ret_masks.append(mask_to_rle(ret_mask))

        if 'masks' not in kwargs.keys():
            gt_masks = None
        else:
            gt_masks = mask_to_rle(kwargs['masks'].cpu().numpy())

        return {
            'prediction': ret_predictions, 'prediction_masks': _ret_masks,
            'gt_masks': gt_masks,
        }

def prepare_seg_pretrain_data(visual_outputs,
                              query_in_proj, query_out_proj):
    clip_feature, query_feat, attention_mask = visual_outputs
    # clip feature (bs, hw, c + 2 * q_c)
    # query_feat (bs, q, 2c)
    # attention_mask (bs, q, hw)
    bs, q, _ = query_feat.shape
    pred_query_embed = []
    gt_query_embed = []
    for i in range(bs):
        valid = attention_mask[i].sum(-1) > 0
        valid_query_feat = query_feat[i][valid]  # (n, 2c)
        gt_query_embed.append(valid_query_feat)

        if isinstance(query_in_proj, list):
            llm_query = valid_query_feat
            for proj in query_in_proj:
                llm_query = proj(llm_query)
        else:
            llm_query = query_in_proj(valid_query_feat)

        pred_query_embed.append(query_out_proj(llm_query))

    pred_query_embed = torch.cat(pred_query_embed, dim=0)
    gt_query_embed = torch.cat(gt_query_embed, dim=0)
    return pred_query_embed, gt_query_embed

def get_seg_hidden_states(hidden_states, output_ids, seg_id):
    seg_mask = output_ids == seg_id
    n_out = len(seg_mask)
    return hidden_states[-n_out:][seg_mask]


def mask_to_rle(mask):
    rle = []
    for m in mask:
        rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8))))
    return rle