File size: 25,195 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import os
from os import listdir

from mmengine.dist import master_only
from vlm.datasets.evaluation.base_eval_dataset import BaseEvalDataset
import json
import numpy as np
import copy
import cv2
from PIL import Image
from lmdeploy.vl.constants import IMAGE_TOKEN
import pycocotools.mask as maskUtils

class SAM2DatasetV2_whole(BaseEvalDataset):
    METAINFO: dict = dict(name='image dataset')
    def __init__(
            self,
            video_folder,
            json_folder,
            bs=8,
            select_frames=3,
    ):
        super().__init__()
        self.json_folder = json_folder
        self.json_files = []
        self.video_folder_idx = []
        if isinstance(json_folder, list):
            for i, _json_folder in enumerate(json_folder):
                json_files = os.listdir(_json_folder)
                for _file in json_files:
                    if 'manual.json' in _file:
                        self.json_files.append(os.path.join(_json_folder, _file))
                        self.video_folder_idx.append(i)
        else:
            json_files = os.listdir(json_folder)
            for _file in json_files:
                if 'manual.json' in _file:
                    self.json_files.append(os.path.join(json_folder, _file))

        self.video_folder = video_folder

        self.bs = bs
        self.num_select_frames = select_frames

    def __len__(self):
        return len(self.json_files) // self.bs

    def _get_data(self, idx):
        other_infos = {}
        json_name = self.json_files[idx]
        # json_path = os.path.join(self.json_folder, json_name)
        json_path = json_name
        with open(json_path, 'r') as f:
            data = json.load(f)

        other_infos['video_id'] = data['video_id']
        if isinstance(self.video_folder, list):
            video_path = os.path.join(self.video_folder[self.video_folder_idx[idx]], '{}.mp4'.format(data['video_id']))
        else:
            video_path = os.path.join(self.video_folder, '{}.mp4'.format(data['video_id']))
        frames = get_video_frames(video_path)
        masklents = decode_masklet(data['masklet'])
        frames = frames[::4]
        assert len(frames) == len(masklents)

        # frames [np.array(h, w, 3), ...]
        # masklents [np.array(h, w, n)]

        n_objs = masklents[0].shape[-1]

        objects_images = []
        for i in range(n_objs):
            object_masklents = [_item[:, :, i] for _item in masklents]
            select_frame_idxs = self.select_frames(object_masklents, nums=self.num_select_frames)
            object_frames = [copy.deepcopy(frames[_idx]) for _idx in select_frame_idxs]
            object_masks = [copy.deepcopy(object_masklents[_idx]) for _idx in select_frame_idxs]
            object_highlighted_images_crop = self.highlight_object_crop(object_frames, object_masks)
            object_highlighted_images_relight = self.highlight_object_relight(object_frames, object_masks)

            # _folder = os.path.join('./work_dirs/sam2_obj_images', 'obj_{}'.format(i))
            # os.mkdir(_folder)
            # for j, _save_iamge in enumerate(object_highlighted_images):
            #     _save_iamge.save(os.path.join(_folder, f'{j}.png'))

            question_crop = self.get_question_crop(len(object_highlighted_images_crop))
            question_relight = self.get_question_relight(len(object_highlighted_images_crop))
            # self._save_drawed_contours(object_highlighted_images_crop,
            #                            video_id=other_infos['video_id'],
            #                            obj_id=i, type='crop')
            # self._save_drawed_contours(object_highlighted_images_relight,
            #                            video_id=other_infos['video_id'],
            #                            obj_id=i, type='relight')

            objects_images.append({'images': object_highlighted_images_crop,
                                   'text_prompt': question_crop, 'type': 'crop', 'obj_id': i})
            objects_images.append(
                {'images': object_highlighted_images_relight, 'text_prompt': question_relight,
                 'type': 'relight', 'obj_id': i})
        return objects_images, other_infos

    def _save_drawed_contours(self, images, video_id, obj_id, type):
        for frame_id, image in enumerate(images):
            frame_name = f'{video_id}_obj{obj_id}_frame{frame_id}_{type}.png'
            image.save(os.path.join('/mnt/bn/xiangtai-training-data/project/xiangtai-windows/tt_vlm/work_dirs/object_contour_demos/', frame_name))
        return

    # def get_question(self, num_objs):
    #     ret = ''
    #     for i in range(num_objs):
    #         ret += f'Image-{i+1}: {IMAGE_TOKEN}\n'
    #     ret += 'Here are several consecutive frames from a video. We have highlighted an object with yellow edges, meaning the object highlighted by the yellow edges in the video is the same object. We need you to provide some discriminative descriptions about this object, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include but are not limited to its category, color, shape, position in the image, state, purpose, properties, and its relationship with surrounding objects.\n'
    #     # ret += 'Please provide a detailed description of the object highlighted by the yellow contour, including its color, shape, position in the image, state, purpose, properties, and its relationship with surrounding objects.'
    #     ret += 'Please give the discriminative descriptions about the object.'
    #     return ret

    def get_question_crop(self, num_objs):
        ret = ''
        for i in range(num_objs):
            ret += f'Image-{i+1}: {IMAGE_TOKEN}\n'
        # ret += 'Here are several consecutive frames from a video. We have highlighted an object with yellow edges, meaning the object highlighted by the yellow edges in the video is the same. Please provide some discriminative descriptions about this object, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include but are not limited to its category, color, shape, state, purpose, properties, and relationship with surrounding objects.\n'
        # ret += 'There is an object highlighted with yellow edge. Please provide some discriminative descriptions about this object, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include but are not limited to its category, color, shape, state, purpose, properties, and relationship with surrounding objects.\n'
        # ret += 'Please provide a detailed description of the object highlighted by the yellow contour, including its color, shape, position in the image, state, purpose, properties, and its relationship with surrounding objects.'
        # ret += 'Here are several consecutive frames from a video. We have highlighted an object with a yellow edge. Please provide some discriminative descriptions about this object, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include its category, colour, shape, included parts, or which entity it is a part of. Please do not mention ‘yellow edge’ in your response, as it is an additional highlight rather than a characteristic of the object itself.\n'
        # ret += 'Please give the discriminative descriptions of the object.'
        # 'Here are some notes. If this region is part of an animal or human limb, such as a hand or leg (including related items like shoes, socks, or sleeves), please specify which limb it is, such as the right foot of a person or the right front leg of an animal. '
        ret += 'Here are several consecutive frames from a video. We have highlighted a region with a yellow edge. Please provide some discriminative descriptions about this region, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include but are not limited to its category, colour, shape, state.\n'
        ret += 'Please do not mention \'yellow edge\' in your response, as it is an additional highlight rather than a characteristic of the region.\n'
        ret += 'Please give the discriminative descriptions of the region.'
        return ret

    def get_question_relight(self, num_objs):
        ret = ''
        for i in range(num_objs):
            ret += f'Image-{i+1}: {IMAGE_TOKEN}\n'
        # ret += 'Here are several consecutive frames from a video. We have highlighted an object with yellow edges, meaning the object highlighted by the yellow edges in the video is the same. Please provide some discriminative descriptions about this object, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include but are not limited to its category, color, shape, position in the image, state, purpose, properties, and relationship with surrounding objects.\n'
        # ret += 'There is an object highlighted with yellow edge. Please provide some discriminative descriptions about this object, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include but are not limited to its category, color, shape, state, purpose, properties, position in the image and relationship with surrounding objects.\n'
        # ret += 'Please give the discriminative descriptions of the object.'

        ret += 'Here are several consecutive frames from a video. We have highlighted a region with a yellow edge. Please provide some discriminative descriptions about this region, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include its category, and relationship with surrounding objects.\n'
        ret += 'If there are significant features nearby that can help easily locate this object, please include them in your response. Please do not mention \'yellow edge\' in your response, as it is an additional highlight rather than a characteristic of the region.\n'
        ret += 'Please give the discriminative descriptions of the region.'
        return ret

    def highlight_object(self, object_frames, object_masks):
        ret = []
        for frame, mask in zip(object_frames, object_masks):
            image = add_edge_color(frame, mask)
            ret.append(image)
        return ret

    def _get_crop_range(self, masks, expand_ratio=1.5):
        boxes = []
        for mask in masks:
            rows, cols = np.nonzero(mask)

            if len(rows) == 0:
                print("Warning !!! Zero mask !!!")
                continue

            x_min, x_max = cols.min(), cols.max() + 1
            y_min, y_max = rows.min(), rows.max() + 1
            boxes.append([x_min, y_min, x_max, y_max])

        h, w = masks[0].shape
        _x_min, _y_min, _x_max, _y_max = boxes[0]
        for box in boxes[1:]:
            _x_min = min(_x_min, box[0])
            _y_min = min(_y_min, box[1])
            _x_max = max(_x_max, box[2])
            _y_max = max(_y_max, box[3])

        _cx = (_x_min + _x_max) / 2.0
        _cy = (_y_min + _y_max) / 2.0

        _x_min = (_x_min - _cx) * expand_ratio + _cx
        _x_max = (_x_max - _cx) * expand_ratio + _cx
        _y_min = (_y_min - _cy) * expand_ratio + _cy
        _y_max = (_y_max - _cy) * expand_ratio + _cy

        _x_min = max(_x_min, 0)
        _y_min = max(_y_min, 0)
        _x_max = min(_x_max, w)
        _y_max = min(_y_max, h)
        return int(_x_min), int(_x_max), int(_y_min), int(_y_max)

    def highlight_object_crop(self, object_frames, object_masks):
        ret = []
        _x_min, _x_max, _y_min, _y_max = self._get_crop_range(object_masks)
        for frame, mask in zip(object_frames, object_masks):
            image = add_edge_color(frame[_y_min:_y_max, _x_min:_x_max], mask[_y_min:_y_max, _x_min:_x_max])
            ret.append(image)
        return ret

    def highlight_object_relight(self, object_frames, object_masks):
        ret = []
        for frame, mask in zip(object_frames, object_masks):
            frame[np.logical_not(mask)] = (frame[np.logical_not(mask)].astype(np.int64) / 2).astype(np.uint8)
            # frame = frame.astype(np.uint8)
            image = add_edge_color(frame, mask)
            ret.append(image)
        return ret

    def select_frames(self, object_masklents, nums=3):
        areas = np.array([np.sum(mask) for mask in object_masklents])
        frame_indexes = np.arange(0, len(object_masklents))

        sort_idxs = np.argsort(areas)[::-1]
        frame_indexes = frame_indexes[sort_idxs][:nums].tolist()
        frame_indexes.sort()
        return frame_indexes

    def __getitem__(self, idx):
        start = idx * self.bs
        end = start + self.bs

        data_dicts = []
        for _idx in range(start, end):
            objects_images, other_infos = self._get_data(_idx)
            for i, object_dict in enumerate(objects_images):
                object_dict.update(other_infos)
                # object_dict.update({'obj_id': i})
                data_dicts.append(object_dict)

        return {'data_dicts': data_dicts, 'image_paths': None, 'type': 'sam2'}

    @master_only
    def evaluate(self, *args, **kwargs):
        return {'Acc': 0}

class SAM2DatasetV3_whole(BaseEvalDataset):
    METAINFO: dict = dict(name='image dataset')
    def __init__(
            self,
            video_folder,
            json_folder,
            bs=8,
            select_frames=1,
    ):
        super().__init__()
        self.json_folder = json_folder
        self.json_files = []
        self.video_folder_idx = []
        if isinstance(json_folder, list):
            for i, _json_folder in enumerate(json_folder):
                json_files = os.listdir(_json_folder)
                for _file in json_files:
                    if 'manual.json' in _file:
                        self.json_files.append(os.path.join(_json_folder, _file))
                        self.video_folder_idx.append(i)
        else:
            json_files = os.listdir(json_folder)
            for _file in json_files:
                if 'manual.json' in _file:
                    self.json_files.append(os.path.join(json_folder, _file))

        self.video_folder = video_folder

        self.bs = bs
        self.num_select_frames = select_frames

    def __len__(self):
        return len(self.json_files) // self.bs

    def _get_data(self, idx):
        other_infos = {}
        json_name = self.json_files[idx]
        # json_path = os.path.join(self.json_folder, json_name)
        json_path = json_name
        with open(json_path, 'r') as f:
            data = json.load(f)

        other_infos['video_id'] = data['video_id']
        if isinstance(self.video_folder, list):
            video_path = os.path.join(self.video_folder[self.video_folder_idx[idx]], '{}.mp4'.format(data['video_id']))
        else:
            video_path = os.path.join(self.video_folder, '{}.mp4'.format(data['video_id']))
        frames = get_video_frames(video_path)
        masklents = decode_masklet(data['masklet'])
        frames = frames[::4]
        assert len(frames) == len(masklents)

        # frames [np.array(h, w, 3), ...]
        # masklents [np.array(h, w, n)]

        n_objs = masklents[0].shape[-1]

        objects_images = []
        for i in range(n_objs):
            object_masklents = [_item[:, :, i] for _item in masklents]
            select_frame_idxs = self.select_frames(object_masklents, nums=self.num_select_frames)
            object_frames = [copy.deepcopy(frames[_idx]) for _idx in select_frame_idxs]
            object_masks = [copy.deepcopy(object_masklents[_idx]) for _idx in select_frame_idxs]
            object_highlighted_images_crop = self.highlight_object_crop(object_frames, object_masks)
            object_highlighted_images_relight = self.highlight_object_relight(object_frames, object_masks)

            # _folder = os.path.join('./work_dirs/sam2_obj_images', 'obj_{}'.format(i))
            # os.mkdir(_folder)
            # for j, _save_iamge in enumerate(object_highlighted_images):
            #     _save_iamge.save(os.path.join(_folder, f'{j}.png'))

            question_crop = self.get_question_crop(len(object_highlighted_images_crop))
            question_relight = self.get_question_relight(len(object_highlighted_images_crop))
            # self._save_drawed_contours(object_highlighted_images_crop,
            #                            video_id=other_infos['video_id'],
            #                            obj_id=i, type='crop')
            # self._save_drawed_contours(object_highlighted_images_relight,
            #                            video_id=other_infos['video_id'],
            #                            obj_id=i, type='relight')

            objects_images.append({'images': object_highlighted_images_crop,
                                   'text_prompt': question_crop, 'type': 'crop', 'obj_id': i})
            objects_images.append(
                {'images': object_highlighted_images_relight, 'text_prompt': question_relight,
                 'type': 'relight', 'obj_id': i})
        return objects_images, other_infos

    def _save_drawed_contours(self, images, video_id, obj_id, type):
        for frame_id, image in enumerate(images):
            frame_name = f'{video_id}_obj{obj_id}_frame{frame_id}_{type}.png'
            image.save(os.path.join('/mnt/bn/xiangtai-training-data/project/xiangtai-windows/tt_vlm/work_dirs/object_contour_demos/', frame_name))
        return

    # def get_question(self, num_objs):
    #     ret = ''
    #     for i in range(num_objs):
    #         ret += f'Image-{i+1}: {IMAGE_TOKEN}\n'
    #     ret += 'Here are several consecutive frames from a video. We have highlighted an object with yellow edges, meaning the object highlighted by the yellow edges in the video is the same object. We need you to provide some discriminative descriptions about this object, which can help us easily distinguish it from other similar objects in the image. The discriminative descriptions should include but are not limited to its category, color, shape, position in the image, state, purpose, properties, and its relationship with surrounding objects.\n'
    #     # ret += 'Please provide a detailed description of the object highlighted by the yellow contour, including its color, shape, position in the image, state, purpose, properties, and its relationship with surrounding objects.'
    #     ret += 'Please give the discriminative descriptions about the object.'
    #     return ret

    def get_question_crop(self, num_objs):
        ret = ''
        print(num_objs)
        for i in range(num_objs):
            ret += f'Image-{i+1}: {IMAGE_TOKEN}\n'
        ret += 'What is the object in the image, please answer with a phrase. If there is insufficient information to clearly identify the object, please respond with \"unidentifiable object.\"'
        return ret

    def get_question_relight(self, num_objs):
        ret = ''
        print(num_objs)
        for i in range(num_objs):
            ret += f'Image-{i + 1}: {IMAGE_TOKEN}\n'
        ret += 'What is the object in the image, please answer with a phrase. If there is insufficient information to clearly identify the object, please respond with \"unidentifiable object.\"'
        return ret

    def highlight_object(self, object_frames, object_masks):
        ret = []
        for frame, mask in zip(object_frames, object_masks):
            image = add_edge_color(frame, mask)
            ret.append(image)
        return ret

    def _get_crop_range(self, masks, expand_ratio=1.5):
        boxes = []
        for mask in masks:
            rows, cols = np.nonzero(mask)

            if len(rows) == 0:
                print("Warning !!! Zero mask !!!")
                continue

            x_min, x_max = cols.min(), cols.max() + 1
            y_min, y_max = rows.min(), rows.max() + 1
            boxes.append([x_min, y_min, x_max, y_max])

        h, w = masks[0].shape
        _x_min, _y_min, _x_max, _y_max = boxes[0]
        for box in boxes[1:]:
            _x_min = min(_x_min, box[0])
            _y_min = min(_y_min, box[1])
            _x_max = max(_x_max, box[2])
            _y_max = max(_y_max, box[3])

        _cx = (_x_min + _x_max) / 2.0
        _cy = (_y_min + _y_max) / 2.0

        _x_min = (_x_min - _cx) * expand_ratio + _cx
        _x_max = (_x_max - _cx) * expand_ratio + _cx
        _y_min = (_y_min - _cy) * expand_ratio + _cy
        _y_max = (_y_max - _cy) * expand_ratio + _cy

        _x_min = max(_x_min, 0)
        _y_min = max(_y_min, 0)
        _x_max = min(_x_max, w)
        _y_max = min(_y_max, h)
        return int(_x_min), int(_x_max), int(_y_min), int(_y_max)

    def highlight_object_crop(self, object_frames, object_masks):
        ret = []
        _x_min, _x_max, _y_min, _y_max = self._get_crop_range(object_masks, expand_ratio=1.0)
        for frame, mask in zip(object_frames, object_masks):
            frame = frame[_y_min:_y_max, _x_min:_x_max]
            mask = mask[_y_min:_y_max, _x_min:_x_max]
            # set to dark
            frame[np.logical_not(mask)] = (frame[np.logical_not(mask)].astype(np.int64) * 0).astype(np.uint8)
            image = frame.astype(np.uint8)
            image = Image.fromarray(image)
            # image = add_edge_color(frame[_y_min:_y_max, _x_min:_x_max], mask[_y_min:_y_max, _x_min:_x_max])
            ret.append(image)
        return ret

    def highlight_object_relight(self, object_frames, object_masks):
        ret = []
        for frame, mask in zip(object_frames, object_masks):
            # set to dark
            frame[np.logical_not(mask)] = (frame[np.logical_not(mask)].astype(np.int64) * 0).astype(np.uint8)
            # frame = frame.astype(np.uint8)
            # image = add_edge_color(frame, mask)
            image = frame.astype(np.uint8)
            image = Image.fromarray(image)
            ret.append(image)
        return ret

    def select_frames(self, object_masklents, nums=3):
        areas = np.array([np.sum(mask) for mask in object_masklents])
        frame_indexes = np.arange(0, len(object_masklents))

        sort_idxs = np.argsort(areas)[::-1]
        frame_indexes = frame_indexes[sort_idxs][:nums].tolist()
        frame_indexes.sort()
        return frame_indexes

    def __getitem__(self, idx):
        start = idx * self.bs
        end = start + self.bs

        data_dicts = []
        for _idx in range(start, end):
            objects_images, other_infos = self._get_data(_idx)
            for i, object_dict in enumerate(objects_images):
                object_dict.update(other_infos)
                # object_dict.update({'obj_id': i})
                data_dicts.append(object_dict)

        return {'data_dicts': data_dicts, 'image_paths': None, 'type': 'sam2'}

    @master_only
    def evaluate(self, *args, **kwargs):
        return {'Acc': 0}


def get_video_frames(video_path):
    cap = cv2.VideoCapture(video_path)

    if not cap.isOpened():
        print("Error: Cannot open video file.")
        return

    frames = []

    frame_id = 0
    while True:
        ret, frame = cap.read()

        if not ret:
            break

        frames.append(frame[:, :, ::-1])

        frame_id += 1

    cap.release()
    return frames


def images_to_video(frames, video_name, fps=6):
    height, width, layers = frames[0].shape

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video = cv2.VideoWriter(video_name, fourcc, fps, (width, height))

    for frame in frames:
        video.write(frame[:, :, ::-1])

    # cv2.destroyAllWindows()
    video.release()
    return

def decode_masklet(masklet):
    masks = []
    for _rle in masklet:
        mask = maskUtils.decode(_rle)
        masks.append(mask)
    return masks

def draw_mask(image, mask):
    obj_mask = mask * 255
    obj_mask = np.stack([obj_mask * 1, obj_mask * 0, obj_mask * 0], axis=2)
    obj_mask = obj_mask * 0.5 + copy.deepcopy(image) * 0.5
    obj_mask = obj_mask.astype(np.uint8)
    return obj_mask

def add_mask2images(frames, masklets):
    show_videos = []
    for i_frames, (frame, masks) in enumerate(zip(frames, masklets)):
        if i_frames == 0:
            n_obj = masks.shape[-1]
            for i_obj in range(n_obj):
                show_videos.append([])

        n_obj = masks.shape[-1]
        for i_obj in range(n_obj):
            show_videos[i_obj].append(draw_mask(copy.deepcopy(frame), masks[:, :, i_obj]))
    return show_videos

def add_edge_color(image, mask, edge_color=(255, 255, 0), thickness=3):
    mask = mask.astype(np.uint8)
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    tuple_contours = tuple([np.array(contour) for contour in contours])
    cv2.drawContours(image, tuple_contours, -1, color=edge_color, thickness=thickness)

    image = image.astype(np.uint8)
    image = Image.fromarray(image)
    return image