File size: 12,857 Bytes
032e687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os
import os.path as osp
import re
from importlib.metadata import files
import torch
import tqdm
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist,
master_only)
from mmengine.utils.dl_utils import set_multi_processing
from torch.utils.data import Dataset
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, CLIPImageProcessor,
CLIPVisionModel, GenerationConfig)
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
from xtuner.tools.utils import get_stop_criteria, is_cn_string
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
PROMPT_TEMPLATE)
from xtuner.registry import BUILDER
from xtuner.configs import cfgs_name_path
from xtuner.model.utils import guess_load_checkpoint
from mmengine.config import Config
from mmengine.fileio import PetrelBackend, get_file_backend
from mmengine.config import ConfigDict
from PIL import Image
import torch.nn.functional as F
from xtuner.dataset.utils import expand2square
from pycocotools import mask as mask_utils
def convert_dict2config_dict(input):
input = ConfigDict(**input)
for key in input.keys():
if isinstance(input[key], dict):
input[key] = convert_dict2config_dict(input[key])
return input
TORCH_DTYPE_MAP = dict(
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
GCG_QUESTIONS = [
'Could you please give me a detailed description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer.',
'Can you provide a thorough description of the this image? Please output with interleaved segmentation masks for the corresponding phrases.',
'Please describe in detail the contents of the image. Please respond with interleaved segmentation masks for the corresponding parts of the answer.',
'Could you give a comprehensive explanation of what can be found within this picture? Please output with interleaved segmentation masks for the corresponding phrases.',
'Could you give me an elaborate explanation of this picture? Please respond with interleaved segmentation masks for the corresponding phrases.',
'Could you provide me with a detailed analysis of this photo? Please output with interleaved segmentation masks for the corresponding parts of the answer.',
]
def parse_args():
parser = argparse.ArgumentParser(description='RefCocoSeg')
parser.add_argument('config', help='config file name or path.')
parser.add_argument('--pth_model', help='pth model file')
parser.add_argument(
'--output-name', type=str, default='gcg', help='save folder name')
parser.add_argument(
'--prompt-template',
choices=PROMPT_TEMPLATE.keys(),
default='internlm2_chat',
help='Specify a prompt template')
parser.add_argument(
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
parser.add_argument(
'--torch-dtype',
default='fp16',
choices=TORCH_DTYPE_MAP.keys(),
help='Override the default `torch.dtype` and load the model under '
'a specific `dtype`.')
parser.add_argument(
'--bits',
type=int,
choices=[4, 8, None],
default=None,
help='LLM bits')
parser.add_argument(
'--bot-name', type=str, default='BOT', help='Name for Bot')
parser.add_argument(
'--offload-folder',
default=None,
help='The folder in which to offload the model weights (or where the '
'model weights are already offloaded).')
parser.add_argument(
'--max-new-tokens',
type=int,
default=100,
help='Maximum number of new tokens allowed in generated text')
parser.add_argument(
'--seed',
type=int,
default=0,
help='Random seed for reproducible text generation')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
args = parser.parse_args()
return args
@master_only
def master_print(msg):
print(msg)
class GCD_Inference_Dataset(Dataset):
def __init__(self,
image_folder,
debug=False,
metainfo=None,
save_dir=None,
):
self.debug = debug
self.image_folder = image_folder
self.metainfo = metainfo
self.images = os.listdir(image_folder)
if save_dir is not None:
# filter evaluated
self.save_dir = save_dir
exsits_files = os.listdir(self.save_dir)
exsits_files = [_file[:-5] for _file in exsits_files]
_images = []
for item in self.images:
if item[:-4] not in exsits_files:
_images.append(item)
self.images = _images
if debug:
self.images = self.images[:20]
def __len__(self):
return len(self.images)
def get_questions(self):
question = "Could you please give me a detailed description of the image? Please respond with interleaved \
segmentation masks for the corresponding parts of the answer."
return question
def __getitem__(self, index):
data_dict = {}
questions = self.get_questions()
image_file = self.images[index]
data_dict['image_file'] = image_file
image_file = os.path.join(self.image_folder, image_file)
# print(image_file)
image = Image.open(image_file).convert('RGB')
data_dict['pixel_values'] = image
data_dict['ori_image'] = image
data_dict['text_prompts'] = "<image>\n" + questions
ori_width, ori_height = image.size
data_dict['ori_image_size'] = (ori_width, ori_height)
data_dict['img_id'] = image_file
data_dict['mode'] = 'demo'
data_dict['masks'] = 'none'
return data_dict
def main():
args = parse_args()
torch.manual_seed(args.seed)
if args.launcher != 'none':
set_multi_processing(distributed=True)
init_dist(args.launcher)
rank, world_size = get_dist_info()
torch.cuda.set_device(rank)
else:
rank = 0
world_size = 1
# build model
if not osp.isfile(args.config):
try:
args.config = cfgs_name_path[args.config]
except KeyError:
raise FileNotFoundError(f'Cannot find {args.config}')
# load config
cfg = Config.fromfile(args.config)
# if args.cfg_options is not None:
# cfg.merge_from_dict(args.cfg_options)
model_name = cfg.model.type if isinstance(cfg.model.type,
str) else cfg.model.type.__name__
model = BUILDER.build(cfg.model)
backend = get_file_backend(args.pth_model)
# if os.path.exists(cfg.pretrained_pth):
# if isinstance(backend, PetrelBackend):
# from xtuner.utils.fileio import patch_fileio
# with patch_fileio():
# state_dict = guess_load_checkpoint(cfg.pretrained_pth)
# else:
# state_dict = guess_load_checkpoint(cfg.pretrained_pth)
#
# # del state_dict['llm.base_model.model.model.tok_embeddings.weight']
# model.load_state_dict(state_dict, strict=False)
# print(f'Load pre PTH model from {cfg.pretrained_pth}')
if isinstance(backend, PetrelBackend):
from xtuner.utils.fileio import patch_fileio
with patch_fileio():
state_dict = guess_load_checkpoint(args.pth_model)
else:
state_dict = guess_load_checkpoint(args.pth_model)
model.load_state_dict(state_dict, strict=False)
print(f'Load PTH model from {args.pth_model}')
datasets_configs = cfg.test_dataset
dataset = GCD_Inference_Dataset(
image_folder='./data/glamm_data/images/grandf/val_test/',
debug=False,
metainfo=datasets_configs[0]['metainfo'],
save_dir="./work_dirs/{}/".format(args.output_name),
# debug=True,
)
datasets = [dataset]
model.cuda()
# model.grounding_encoder.cuda()
# model.text_hidden_fcs.cuda()
model.eval()
for i_dataset, dataset in enumerate(datasets):
model.preparing_for_generation(dataset.metainfo)
results = []
n_samples = len(dataset)
per_rank_samples = math.ceil(n_samples / world_size)
per_rank_ids = range(per_rank_samples * rank,
min(n_samples, per_rank_samples * (rank + 1)))
for idx in tqdm.tqdm(per_rank_ids):
data_batch = dataset[idx]
prediction = {'img_id': data_batch['img_id']}
outputs = model.predict_forward(**data_batch)
prediction.update(outputs)
results.append(prediction)
if 'prediction_masks' not in prediction.keys():
print("No SEG !!!")
print(prediction['prediction'])
w, h = data_batch['ori_image_size']
prediction['prediction_masks'] = torch.zeros((0, h, w), dtype=torch.bool)
else:
prediction['prediction_masks'] = torch.stack(prediction['prediction_masks'], dim=0)[:, 0]
# print(prediction['prediction'], "----", len(prediction['prediction_masks']))
process_and_save_output(
"./work_dirs/{}/".format(args.output_name),
data_batch['image_file'],
prediction['prediction'],
prediction['prediction_masks']
)
# results = collect_results(results, len(dataset))
# if get_rank() == 0:
# metric = dataset.evaluate(results, './work_dirs')
# objects = [metric]
# else:
# objects = [None]
print(f"Done eval of dataset {i_dataset}.")
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
seg_mask = output_ids == seg_id
n_out = len(seg_mask)
return hidden_states[-n_out:][seg_mask]
def process_and_save_output(output_dir, image_name, text_output, pred_masks):
if not os.path.exists(output_dir):
os.mkdir(output_dir)
text_output = text_output.replace("<s>", "").replace("\n", "").replace(" ", " ")
text_output = text_output.split("ASSISTANT: ")[-1]
cleaned_str = re.sub(r'<.*?>', '', text_output)
pattern = re.compile(r'<p>(.*?)<\/p>')
phrases = pattern.findall(text_output)
phrases = [p.strip() for p in phrases]
# Remove the [SEG] token
cleaned_str = cleaned_str.replace('[SEG]', '')
# Strip unnecessary spaces
cleaned_str = ' '.join(cleaned_str.split()).strip("'")
cleaned_str = cleaned_str.strip()
# Convert the predicted masks into RLE format
pred_masks_tensor = pred_masks.cpu()
uncompressed_mask_rles = mask_to_rle_pytorch(pred_masks_tensor)
rle_masks = []
for m in uncompressed_mask_rles:
rle_masks.append(coco_encode_rle(m))
# Create results dictionary
# print(f"clean_str: {cleaned_str}")
result_dict = {
"image_id": image_name[:-4],
"caption": cleaned_str,
"phrases": phrases,
"pred_masks": rle_masks
}
# print(cleaned_str)
# print(phrases)
output_path = f"{output_dir}/{image_name[:-4]}.json"
with open(output_path, 'w') as f:
json.dump(result_dict, f)
return
def mask_to_rle_pytorch(tensor: torch.Tensor):
"""
Encodes masks to an uncompressed RLE, in the format expected by
pycoco tools.
"""
# Put in fortran order and flatten h,w
b, h, w = tensor.shape
tensor = tensor.permute(0, 2, 1).flatten(1)
# Compute change indices
diff = tensor[:, 1:] ^ tensor[:, :-1]
change_indices = diff.nonzero()
# Encode run length
out = []
for i in range(b):
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
cur_idxs = torch.cat(
[torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), cur_idxs + 1,
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ]
)
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
counts = [] if tensor[i, 0] == 0 else [0]
counts.extend(btw_idxs.detach().cpu().tolist())
out.append({"size": [h, w], "counts": counts})
return out
def coco_encode_rle(uncompressed_rle):
h, w = uncompressed_rle["size"]
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
return rle
if __name__ == '__main__':
main()
|