File size: 4,119 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os
import json

import torch
from transformers import AutoTokenizer, AutoModel
import cv2
from pycocotools import mask as maskUtils
from PIL import Image


images_folder = '/mnt/bn/xiangtai-training-data/project/xiangtai-windows/tt_vlm/qilu_folder/images/'
save_demo_dir = '/mnt/bn/xiangtai-training-data/project/xiangtai-windows/tt_vlm/qilu_folder/draw_images/'
save_mask_dir = '/mnt/bn/xiangtai-training-data/project/xiangtai-windows/tt_vlm/qilu_folder/masks/'

demo_items = []
image_files = os.listdir(images_folder)
gcg_question = '<image>\nCan you provide a brief description of the this image? Please output with interleaved segmentation masks for the corresponding phrases.'
for image_file in image_files:
    image_path = os.path.join(images_folder, image_file)
    demo_items.append(
        {'image_path': image_path, 'question': gcg_question}
    )

TORCH_DTYPE_MAP = dict(
    fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')

def get_video_frames(video_path):
    cap = cv2.VideoCapture(video_path)

    if not cap.isOpened():
        print("Error: Cannot open video file.")
        return

    frames = []

    frame_id = 0
    while True:
        ret, frame = cap.read()

        if not ret:
            break

        frames.append(frame)

        frame_id += 1

    cap.release()
    return frames

def get_frames_from_video(video_path, n_frames=5):
    frames = get_video_frames(video_path)
    stride = len(frames) / (n_frames + 1e-4)
    ret = []
    for i in range(n_frames):
        idx = int(i * stride)
        frame = frames[idx]
        frame = frame[:, :, ::-1]
        frame_image = Image.fromarray(frame).convert('RGB')
        ret.append(frame_image)
    return ret


def main():
    # model_path = 'work_dirs/sa2va_8b/'
    # model_path = 'work_dirs/sa2va_4b/'
    # model = AutoModel.from_pretrained(
    #     model_path,
    #     torch_dtype=torch.bfloat16,
    #     low_cpu_mem_usage=True,
    #     use_flash_attn=True,
    #     trust_remote_code=True,
    # ).eval().cuda()
    #
    # tokenizer = AutoTokenizer.from_pretrained(
    #     model_path,
    #     trust_remote_code=True,
    # )

    json_dir = '/mnt/bn/xiangtai-training-data/project/xiangtai-windows/glamm/groundingLMM/'

    for i, demo_item in enumerate(demo_items):
        image_path = demo_item['image_path']
        text_prompts = demo_item['question']
        ori_image = Image.open(image_path).convert('RGB')

        json_path = os.path.join(json_dir, f'0{i+1}.json')
        with open(json_path, 'r') as f:
            results = json.load(f)

        masks = results['pred_masks']
        pred_masks = [torch.Tensor(maskUtils.decode(ann)) for ann in masks]

        show_mask_pred(ori_image, pred_masks,
                           save_dir_demo=os.path.join(save_demo_dir, f'output_{i}.png'),
                           save_dir_mask=os.path.join(save_mask_dir, f"output_{i}.png")
                           )

def show_mask_pred(image, masks, save_dir_demo=None, save_dir_mask=None):
    from PIL import Image
    import numpy as np

    colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255),
              (255, 255, 0), (255, 0, 255), (0, 255, 255),
              (128, 128, 255)]

    masks = torch.stack(masks, dim=0).cpu().numpy()
    _mask_image = np.zeros((masks.shape[1], masks.shape[2], 3), dtype=np.uint8)

    for i, mask in enumerate(masks):
        color = colors[i % len(colors)]
        _mask_image[:, :, 0] = _mask_image[:, :, 0] + mask.astype(np.uint8) * color[0]
        _mask_image[:, :, 1] = _mask_image[:, :, 1] + mask.astype(np.uint8) * color[1]
        _mask_image[:, :, 2] = _mask_image[:, :, 2] + mask.astype(np.uint8) * color[2]

    mask_image = np.array(_mask_image).astype(np.uint8)
    mask_image = Image.fromarray(mask_image)
    mask_image.save(save_dir_mask)

    image = np.array(image)
    image = image * 0.5 + _mask_image * 0.5
    image = image.astype(np.uint8)
    image = Image.fromarray(image)
    image.save(save_dir_demo)

    return

if __name__ == '__main__':
    main()