File size: 35,091 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
from typing import Literal

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmdet.models import CrossEntropyLoss

from xtuner.registry import BUILDER
from xtuner.model.utils import get_peft_model_state_dict

from projects.lisa.datasets.utils import DEFAULT_IMAGE_TOKEN
from projects.lisa.models.lisa import LisaModel

from xtuner.utils import PROMPT_TEMPLATE
from xtuner.tools.utils import get_stop_criteria
from transformers import GenerationConfig
from projects.llava_sam2.models.preprocess.image_resize import DirectResize

import numpy as np

from .utils import dynamic_preprocess

import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

from pycocotools import mask as _mask

from types import MethodType

from xtuner.model.utils import guess_load_checkpoint

from mmcv.ops import point_sample
from mmdet.models.utils import get_uncertain_point_coords_with_randomness

class VideoLLaVASAMBaselineModel(LisaModel):
    def __init__(self,
                 mllm,
                 tokenizer,
                 grounding_encoder,
                 loss_mask=None,
                 loss_dice=None,
                 torch_dtype=torch.bfloat16,
                 pretrained_pth=None,
                 frozen_sam2_decoder=True,
                 special_tokens=None,
                 loss_sample_points=False,
                 num_points=12544,
                 # for slow fast arch
                 fast_pool=False,
                 fast_pool_size=4,
                 use_fast_supervision=False,
                 # for inference
                 phi3=True,
                 template=None,
                 # for arch selection
                 arch_type:Literal['intern_vl', 'qwen', 'llava']='intern_vl',
                 # for inference large model
                 split_model=False,
                 ):
        super(LisaModel, self).__init__()
        self.split_model = split_model
        if split_model:
            mllm.model_split = split_model
        self.special_tokens = special_tokens
        self.mllm = BUILDER.build(mllm)
        self.mllm.get_model().initialize_vision_modules(self.mllm.get_model().config)
        vision_tower = self.mllm.get_model().get_vision_tower()
        vision_tower.to(dtype=torch_dtype)

        self.arch_type = arch_type

        self.fast_pool = fast_pool
        self.fast_pool_size = fast_pool_size

        self.tokenizer = BUILDER.build(tokenizer)
        self.mllm.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
        self.grounding_encoder = BUILDER.build(grounding_encoder)
        self.grounding_encoder.requires_grad_(False)
        if not frozen_sam2_decoder:
            self.grounding_encoder.sam2_model.sam_mask_decoder.requires_grad_(True)

        self.loss_mask = BUILDER.build(loss_mask)
        self.loss_dice = BUILDER.build(loss_dice)
        if use_fast_supervision:
            self.loss_exists = BUILDER.build(dict(
                type=CrossEntropyLoss,
                use_sigmoid=True,
                reduction='mean',
                loss_weight=1.0)
            )

        self.torch_dtype = torch_dtype

        if pretrained_pth is not None:
            pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
            self.load_state_dict(pretrained_state_dict, strict=False)
            print(f'Load pretrained weight from {pretrained_pth}')

        self.loss_sample_points = loss_sample_points
        self.num_points = num_points
        self.oversample_ratio = 3.0
        self.importance_sample_ratio = 0.75
        self.use_fast_supervision = use_fast_supervision
        self.phi3 = phi3
        self.template = template


    def activation_checkpointing_disable(self):
        self.mllm.gradient_checkpointing_disable()


    def _add_special_tokens(self):
        special_tokens = self.special_tokens
        _num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)

        # if not isinstance(self.mllm.model.language_model.get_output_embeddings(), nn.Linear):
        #     print("Change the lm_head to nn.Linear !!!")
        #     transposed = False
        #     old_lm_head = self.mllm.model.language_model.get_output_embeddings()
        #     old_num_tokens, old_lm_head_dim = (
        #         old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
        #     )
        #     new_lm_head_shape = (old_lm_head_dim, len(tokenizer)) if not transposed else (
        #     len(tokenizer), old_lm_head_dim)
        #     has_new_lm_head_bias = old_lm_head.bias is not None
        #     new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device)
        #     new_lm_head.weight = old_lm_head.weight
        #     new_lm_head.bias = old_lm_head.bias
        #     self.mllm.model.language_model.set_output_embeddings(new_lm_head)

        # this is already done in mllm
        # if num_new_tokens > 0:
        #     self.mllm.model.language_model.resize_token_embeddings(len(self.tokenizer))

        # assert isinstance(self.mllm, InternVL_Slowfast)
        self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0]

    def state_dict(self, *args, **kwargs):
        state_dict = super(LisaModel, self).state_dict(*args, **kwargs)
        from collections import OrderedDict

        to_return = OrderedDict()
        # Step 1. visual_encoder
        if self.mllm.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.mllm.model.vision_model, state_dict=state_dict))
            raise NotImplementedError
        elif not self.mllm.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'visual_encoder.' in k
            })
            raise NotImplementedError
        # Step 2. LLM
        if self.mllm.use_llm_lora:
            if self.arch_type == 'intern_vl':
                to_return.update(
                    get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
                )
            elif self.arch_type == 'qwen':
                to_return.update(
                    get_peft_model_state_dict(self.mllm.model.model, state_dict=state_dict)
                )
            elif self.arch_type == 'llava':
                to_return.update(
                    get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict)
                )
        elif not self.mllm.freeze_llm:
            to_return.update(
                {k: v
                 for k, v in state_dict.items() if 'llm.' in k})
            raise NotImplementedError
        # Step 3. Projector
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'mlp1.' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'model.multi_modal_projector.' in k})

        # Step 4. mask decoder of grounding model (SAM/SAM2)
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'mask_decoder' in k})

        # Step 5. others (fcs)
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'text_hidden_fcs.' in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'text_exist_fcs.' in k}
        )
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'lm_head.weight' in k or 'output' in k and 'sam2_model' not in k})
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'embed_tokens.weight' in k or 'tok_embeddings' in k})
        return to_return

    def check_obj_number(self, pred_embeddings_list_video, gt_masks_video, fix_number=5):
        assert len(pred_embeddings_list_video) == len(gt_masks_video)
        ret_pred_embeddings_list_video = []
        ret_gt_masks_video = []
        for pred_mebeds, gt_masks in zip(pred_embeddings_list_video, gt_masks_video):
            # assert len(pred_mebeds) == len(gt_masks)
            if len(pred_mebeds) != len(gt_masks):
                min_num = min(len(pred_mebeds), len(gt_masks))
                pred_mebeds = pred_mebeds[:min_num]
                gt_masks = gt_masks[:min_num]
            if len(pred_mebeds) != fix_number:
                if len(pred_mebeds) > fix_number:
                    _idxs = torch.randperm(pred_mebeds.shape[0])
                    _idxs = _idxs[:fix_number]
                    pred_mebeds = pred_mebeds[_idxs]
                    gt_masks = gt_masks[_idxs]
                else:
                    n_repeat = fix_number // len(pred_mebeds) + 1
                    pred_mebeds = torch.cat([pred_mebeds] * n_repeat, dim=0)[:fix_number]
                    gt_masks = torch.cat([gt_masks] * n_repeat, dim=0)[:fix_number]
            ret_pred_embeddings_list_video.append(pred_mebeds)
            ret_gt_masks_video.append(gt_masks)
        return ret_pred_embeddings_list_video, ret_gt_masks_video

    def forward(self, data, data_samples=None, mode='loss'):
        g_pixel_values = data.pop('g_pixel_values', None)
        gt_masks = data.pop('masks', None)
        frames_per_batch = data.pop('frames_per_batch', None)
        input_ids = data['input_ids']
        fast_exists = data.pop('fast_exists', None)
        # if self.arch_type == 'llava' and data.get('pixel_values', None) is not None:
        #     data['pixel_values'] = data['pixel_values'].to(self.torch_dtype)
        if self.fast_pool:
            output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx)
        else:
            output = self.mllm(data, data_samples, mode)
        if gt_masks is None:
            return {'llm_loss': output.loss, 'loss_mask': output.loss * 0.0, 'loss_dice': output.loss * 0.0}

        assert frames_per_batch, "Video Lisa require frames_per_batch !!!"
        # print('frmaes_per_batch: ', frames_per_batch)
        ori_size_list = []
        for i_bs, mask in enumerate(gt_masks):
            mask_shape = mask.shape[-2:]
            ori_size_list += [mask_shape] * frames_per_batch[i_bs]

        seg_token_mask = input_ids == self.seg_token_idx

        # seg_token_mask = seg_token_mask[:, 1:]
        # seg_token_mask = torch.cat([
        #     seg_token_mask,
        #     seg_token_mask.new_zeros(seg_token_mask.shape[0], 1)], dim=-1)

        hidden_states = output.hidden_states
        hidden_states = self.text_hidden_fcs(hidden_states[-1])
        pred_embeddings = hidden_states[seg_token_mask]

        seg_token_counts = seg_token_mask.int().sum(-1)
        pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0)
        pred_embeddings_list = []
        for item in pred_embeddings_list_:
            if len(item) != 0:
                pred_embeddings_list.append(item)
        # print('pred_embeddings_list: ', [item.shape for item in pred_embeddings_list])
        pred_embeddings_list_video, success = self.genetate_video_pred_embeddings(
            pred_embeddings_list, frames_per_batch)
        if not success:
            return {'llm_loss': output.loss, 'loss_mask': output.loss * 0.0, 'loss_dice': output.loss * 0.0}

        if self.use_fast_supervision and fast_exists is not None:
            # gt_exists = []
            # for id_x, _fast_exists in enumerate(fast_exists):
            #     num_tot = _fast_exists.shape[0]
            #     num_conv = gt_masks[id_x].shape[0] // frames_per_batch[id_x]
            #     assert num_tot % num_conv == 0
            #     gt_exists.append(_fast_exists.reshape(num_conv, num_tot // num_conv))
            fast_flag = input_ids == self.fast_token_idx
            fast_tokens = output.hidden_states[-1][fast_flag]
            exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
            gt_exists = torch.cat(fast_exists)
            loss_exists = self.loss_exists(exists_logit, gt_exists)
        else:
            loss_exists = None

        gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch)
        pred_embeddings_list_video, gt_masks_video = self.check_obj_number(
            pred_embeddings_list_video, gt_masks_video
        )
        g_pixel_values = torch.stack([
            self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
        ])
        num_objs = pred_embeddings_list_video[0].shape[0]
        num_frames = len(pred_embeddings_list_video)
        language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]
        sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
        pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))

        bs = len(pred_masks)
        loss_mask, loss_dice = 0, 0
        accuracy = 0
        for i in range(bs):
            pred_mask = pred_masks[i]
            gt_mask = gt_masks_video[i]
            pred_mask = F.interpolate(pred_mask.unsqueeze(0), size=ori_size_list[i], mode='bilinear').squeeze(0)

            if len(pred_mask) != len(gt_mask):
                print('Warning !!! Pred and GT not equal !!!')
                _zero = pred_mask.sum() * 0.0
                loss_mask += _zero
                loss_dice += _zero
                accuracy += _zero
            else:
                if self.loss_sample_points:
                    sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_mask, gt_mask)
                    sam_loss_dice = self.loss_dice(
                        sampled_pred_mask,
                        sampled_gt_mask, avg_factor=(len(gt_mask) + 1e-4))
                    sam_loss_mask = self.loss_mask(
                        sampled_pred_mask.reshape(-1),
                        sampled_gt_mask.reshape(-1),
                        avg_factor=(pred_mask.shape[0] * sampled_pred_mask.shape[1] + 1e-4))
                else:
                    sam_loss_mask = self.loss_mask(pred_mask, gt_mask)
                    sam_loss_dice = self.loss_dice(pred_mask, gt_mask)
                accuracy += torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean()
                loss_mask += sam_loss_mask
                loss_dice += sam_loss_dice

        loss_dict = {
            'loss_mask': loss_mask / (bs + 1e-4),
            'loss_dice': loss_dice / (bs + 1e-4),
            'llm_loss': output.loss,
        }
        if loss_exists is not None:
            loss_dict['loss_exists'] = loss_exists
        return loss_dict

    def sample_points(self, mask_pred, gt_masks):
        gt_masks = gt_masks.unsqueeze(1)
        gt_masks = gt_masks.to(mask_pred)
        mask_pred = mask_pred.unsqueeze(1)
        # (N, 1, h, w)

        with torch.no_grad():
            points_coords = get_uncertain_point_coords_with_randomness(
                mask_pred.to(torch.float32), None, self.num_points,
                self.oversample_ratio, self.importance_sample_ratio)
            # shape (num_total_gts, h, w) -> (num_total_gts, num_points)
            mask_point_targets = point_sample(
                gt_masks.float(), points_coords).squeeze(1)
        # shape (num_queries, h, w) -> (num_queries, num_points)
        mask_point_preds = point_sample(
            mask_pred.to(torch.float32), points_coords.to(torch.float32)).squeeze(1)
        return mask_point_preds.to(mask_pred.dtype), mask_point_targets.to(mask_pred.dtype)

    def genetate_video_pred_embeddings(self, pred_embeddings_list, frames_per_batch):
        if len(pred_embeddings_list) == len(frames_per_batch):
            success = True
        else:
            success = False
            print("len(pred_embeddings_list):{} is not equal to len(frames_per_batch):{} !!!".format(len(pred_embeddings_list), len(frames_per_batch)))
        pred_embeddings_list_video = []
        for pred_embedding_batch, frame_nums in zip(pred_embeddings_list, frames_per_batch):
            pred_embeddings_list_video += [pred_embedding_batch] * frame_nums
        return pred_embeddings_list_video, success

    def process_video_gt_masks(self, gt_masks, frames_per_batch):
        gt_masks_video = []

        assert len(gt_masks) == len(frames_per_batch)
        for gt_masks_batch, frames_num in zip(gt_masks, frames_per_batch):
            N, H, W = gt_masks_batch.shape
            assert N % frames_num == 0
            gt_masks_batch = gt_masks_batch.reshape(
                N // frames_num, frames_num, H, W)
            for i in range(frames_num):
                gt_masks_video.append(gt_masks_batch[:, i])
        return gt_masks_video

    def preparing_for_generation(self, metainfo, **kwargs):
        # set stop criteria and generation configs for model
        assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!"
        self.bot_name = 'BOT'
        if 'template' in metainfo.keys():
            template = metainfo['template']
        else:
            template = PROMPT_TEMPLATE['phi3_chat']
        if self.template is None:
            self.template = template
        stop_words = []
        stop_words += self.template.get('STOP_WORDS', [])
        stop_criteria = get_stop_criteria(
            tokenizer=self.tokenizer, stop_words=stop_words)
        self.stop_criteria = stop_criteria

        default_generation_kwargs = dict(
            max_new_tokens=512,
            do_sample=False,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=(
                self.tokenizer.pad_token_id
                if self.tokenizer.pad_token_id is not None
                else self.tokenizer.eos_token_id
            ),
        )
        default_generation_kwargs.update(metainfo.get('generation_kwargs', {}))
        self.gen_config = GenerationConfig(**default_generation_kwargs)
        self.init_prediction_config = True

        self.mllm.to(self.torch_dtype)
        # self.text_hidden_fcs.to(self.torch_dtype)
        # if getattr(self, 'text_exist_fcs', None) is not None:
        #     self.text_exist_fcs.to(self.torch_dtype)

        # for sam image processor
        self.extra_image_processor = DirectResize(target_length=1024, )
        # for multi image process
        self.min_dynamic_patch = 1
        if 'max_dynamic_patch' in metainfo.keys():
            self.max_dynamic_patch = metainfo['max_dynamic_patch']
        else:
            self.max_dynamic_patch = 12
        self.downsample_ratio = 0.5
        self.image_size = 448
        self.use_thumbnail = True
        patch_size = 14
        self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
        self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
        self.IMAGENET_STD = (0.229, 0.224, 0.225)
        self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
        self.IMG_START_TOKEN = '<img>'
        self.IMG_END_TOKEN = '</img>'

        self.transformer = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
        ])

    def predict_video(self, pixel_values, text_prompts, **kwargs):
        ori_h, ori_w = kwargs['ori_height'], kwargs['ori_width']

        _input_ids = kwargs['input_ids']

        g_pixel_values = kwargs.pop('g_pixel_values', None)
        g_pixel_values = torch.stack([
            self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values
        ])

        fast_pixel_values = kwargs.pop('fast_pixel_values', None)
        if fast_pixel_values is None:
            fast_token_idx = None
        else:
            fast_token_idx = self.fast_token_idx

        predictions = []
        pred_masks = []
        is_exists_list = []
        for input_ids in _input_ids:
            input_ids = torch.tensor(input_ids).unsqueeze(0)
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
            pixel_values = pixel_values.to(dtype=self.torch_dtype)
            if fast_pixel_values is not None:
                fast_pixel_values = fast_pixel_values.to(dtype=self.torch_dtype)
            mm_inputs = {
                'pixel_values': pixel_values,
                'input_ids': input_ids,
                'attention_mask': attention_mask,
                'position_ids': None,
                'past_key_values': None,
                'labels': None,
                'fast_pixel_values': fast_pixel_values,
                'fast_token_idx': fast_token_idx,
            }
            generate_output = self.mllm.evaluate(
                images_clip=pixel_values,
                images=g_pixel_values,
                input_ids=input_ids,
                resize_list=[],
                original_size_list=[],
                max_new_tokens=512,
            )

            generate_output = self.mllm.generate(
                **mm_inputs,
                generation_config=self.gen_config,
                streamer=None,
                bos_token_id=self.tokenizer.bos_token_id,
                stopping_criteria=self.stop_criteria,
                output_hidden_states=True,
                return_dict_in_generate=True
            )

            predict = self.tokenizer.decode(generate_output.sequences[0], skip_special_tokens=False).strip()

            # input_text = self.tokenizer.decode(mm_inputs['input_ids'][0], skip_special_tokens=False)
            # print(input_text, generate_output.sequences[0], '\n', predict, self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0])

            predictions.append(predict)

            hidden_states = generate_output.hidden_states
            last_hidden_states = [item[-1][0] for item in hidden_states]
            last_hidden_states = torch.cat(last_hidden_states, dim=0)
            seg_hidden_states = get_seg_hidden_states(
                last_hidden_states, generate_output.sequences[0][:-1],
                seg_id=self.seg_token_idx
            )

            if len(seg_hidden_states) == 0:
                print("Warning, no [SEG] tokens !!!")
                pred_masks.append(torch.zeros((g_pixel_values.shape[0], ori_h, ori_w), dtype=torch.int))
                continue
            elif len(seg_hidden_states) > 1:
                print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states)))
                seg_hidden_states = seg_hidden_states[:1]
            seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)

            seg_hidden_states = seg_hidden_states.to(dtype=torch.float32)

            sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
            # TODO: change 5
            if len(pixel_values) < 5:
                pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * pixel_values.shape[0])
            else:
                pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * 5)
            pred_mask = F.interpolate(
                pred_mask,
                size=(ori_h, ori_w),
                mode='bilinear',
                align_corners=False,
            )
            pred_mask = pred_mask[:, 0]
            pred_mask = pred_mask.sigmoid() > 0.5
            pred_mask = pred_mask.int()
            # supervision
            if self.use_fast_supervision and (input_ids == self.fast_token_idx).sum() > 0:
                fast_flag = input_ids.squeeze(0) == self.fast_token_idx
                len_out = generate_output.sequences[0][:-1].shape[0]
                fast_tokens = last_hidden_states[:-len_out][fast_flag].to(dtype=torch.float32)
                exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2])
                is_exists = exists_logit.squeeze(-1).sigmoid() > 0.5
                is_exists_list.append(is_exists)
                not_exists = torch.logical_not(is_exists)
                if torch.any(not_exists):
                    pred_mask[not_exists] = pred_mask[not_exists] * 0

            pred_masks.append(pred_mask)
        assert len(pred_masks) == len(text_prompts)
        ret_dict = {
            'prediction': predictions,
            'prediction_masks': [mask_to_rle(_item.cpu().numpy()) for _item in pred_masks],
        }
        if 'id' in kwargs.keys():
            ret_dict['id'] = kwargs['id']

        if len(is_exists_list) > 0:
            ret_dict['is_exists'] = is_exists_list
        return ret_dict

    def predict_forward(
            self,
            pixel_values,
            text_prompts,
            ori_image_size=None,
            ori_image=None,
            mode='eval',
            **kwargs
    ):
        assert self.init_prediction_config, "Please set prediction configs using self.preparing_for_generation()"

        if kwargs.get('type', 'image') == 'video':
            return self.predict_video(pixel_values, text_prompts, **kwargs)
        if mode == 'demo_video':
            return self.predict_demo_video(
                pixel_values, text_prompts, ori_image_size, ori_image, **kwargs)

        input_dict = {}

        # prepare images
        assert ori_image is not None, "InternVL2 only support process the image from scratch !!!"
        image = ori_image
        # for pixel segmentation tasks
        if ori_image_size is not None and 'masks' in kwargs.keys():
            g_image = np.array(image)  # for grounding
            g_image = self.extra_image_processor.apply_image(g_image)
            g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
            input_dict['g_pixel_values'] = g_pixel_values

        images = dynamic_preprocess(image, self.min_dynamic_patch,
                                    self.max_dynamic_patch,
                                    self.image_size, self.use_thumbnail)
        pixel_values = [self.transformer(image) for image in images]
        pixel_values = torch.stack(pixel_values).to(self.torch_dtype)
        input_dict['pixel_values'] = pixel_values

        num_image_tokens = pixel_values.shape[0] * self.patch_token
        image_token_str = f'{self.IMG_START_TOKEN}' \
                          f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                          f'{self.IMG_END_TOKEN}'


        ret_predictions = []
        ret_masks = []

        if isinstance(text_prompts, str):
            text_prompts = [text_prompts]
        for text_prompt in text_prompts:
            # add template for text
            text_prompt = text_prompt.replace(DEFAULT_IMAGE_TOKEN, image_token_str)
            input_text = ''
            input_text += self.template['INSTRUCTION'].format(
                input=text_prompt, round=1, bot_name=self.bot_name)

            ids = self.tokenizer.encode(input_text)
            ids = torch.tensor(ids).cuda().unsqueeze(0)

            attention_mask = torch.ones_like(ids, dtype=torch.bool)

            mm_inputs = {
                'pixel_values': input_dict['pixel_values'],
                'input_ids': ids,
                'attention_mask': attention_mask,
                'position_ids': None,
                'past_key_values': None,
                'labels': None
            }

            generate_output = self.mllm.generate(
                **mm_inputs,
                generation_config=self.gen_config,
                streamer=None,
                bos_token_id=self.tokenizer.bos_token_id,
                stopping_criteria=self.stop_criteria,
                output_hidden_states=True,
                return_dict_in_generate=True
            )
            predict = self.tokenizer.decode(
                generate_output.sequences[0], skip_special_tokens=False).strip()
            # print(predict)
            ret_predictions.append(predict)
            # refcoco test need debug !!!
            if ori_image_size is not None and 'masks' in kwargs.keys():
                hidden_states = generate_output.hidden_states
                last_hidden_states = [item[-1][0] for item in hidden_states]
                last_hidden_states = torch.cat(last_hidden_states, dim=0)
                seg_hidden_states = get_seg_hidden_states(
                    last_hidden_states, generate_output.sequences[0][:-1],
                    seg_id=self.seg_token_idx
                )

                if mode == 'demo':
                    all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)
                    for seg_hidden_states in all_seg_hidden_states:
                        seg_hidden_states = seg_hidden_states.unsqueeze(0)
                        g_pixel_values = torch.stack([
                            self.grounding_encoder.preprocess_image(pixel, dtype=self.torch_dtype) for pixel in
                            [input_dict['g_pixel_values']]
                        ])
                        sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
                        pred_masks = self.grounding_encoder.inject_language_embd(sam_states, [seg_hidden_states])
                        w, h = ori_image_size
                        masks = F.interpolate(pred_masks, size=(h, w),
                                              mode='bilinear', align_corners=False)
                        masks = masks[:, 0]
                        masks = masks.sigmoid() > 0.5
                        masks = masks.int()
                        ret_masks.append(masks)
                    print('Done gcg demos')
                    continue

                if len(seg_hidden_states) == 0:
                    print("Warning, no [SEG] tokens !!!")
                    ret_masks.append(None)
                    continue
                elif len(seg_hidden_states) > 1:
                    print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states)))
                    seg_hidden_states = seg_hidden_states[:1]
                seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)

                g_pixel_values = torch.stack([
                    self.grounding_encoder.preprocess_image(pixel, dtype=self.torch_dtype) for pixel in [input_dict['g_pixel_values']]
                ])
                sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
                pred_masks = self.grounding_encoder.inject_language_embd(sam_states, [seg_hidden_states])
                w, h = ori_image_size
                masks = F.interpolate(pred_masks, size=(h, w),
                                      mode='bilinear', align_corners=False)
                masks = masks[:, 0]
                masks = masks.sigmoid() > 0.5
                masks = masks.int()
                ret_masks.append(masks)

        if len(ret_predictions) == 1:
            ret_predictions = ret_predictions[0]
        if len(ret_masks) == 0:
            return {'prediction': ret_predictions}

        _ret_masks = []
        for i, ret_mask in enumerate(ret_masks):
            if ret_mask is None:
                _ret_masks.append(None)
            else:
                ret_mask = ret_mask.cpu().numpy()
                _ret_masks.append(mask_to_rle(ret_mask))

        if mode == 'demo':
            return {
                'prediction': ret_predictions, 'prediction_masks': ret_masks,
            }

        if 'masks' not in kwargs.keys():
            gt_masks = None
        else:
            gt_masks = mask_to_rle(kwargs['masks'].cpu().numpy())
        return {
            'prediction': ret_predictions, 'prediction_masks': _ret_masks,
            'gt_masks': gt_masks,
        }

    def predict_demo_video(
            self,
            pixel_values,
            text_prompts,
            ori_image_size=None,
            ori_image=None,
            **kwargs
    ):
        input_dict = {}

        # prepare images
        assert ori_image is not None, "InternVL2 only support process the image from scratch !!!"
        assert isinstance(ori_image, list)
        all_image_token_str = ''
        all_pixel_values = []
        for idx_img, image in enumerate(ori_image):
            images = dynamic_preprocess(image, self.min_dynamic_patch,
                                        1,
                                        self.image_size, self.use_thumbnail)
            pixel_values = [self.transformer(image) for image in images]
            all_pixel_values += pixel_values

            num_image_tokens = len(pixel_values) * self.patch_token
            image_token_str = f'{self.IMG_START_TOKEN}' \
                              f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
                              f'{self.IMG_END_TOKEN}'
            image_token_str = f"Frame-{idx_img + 1}: " + image_token_str + '\n'
            all_image_token_str += image_token_str

        all_pixel_values = torch.stack(all_pixel_values).to(self.torch_dtype)
        input_dict['pixel_values'] = all_pixel_values

        ret_predictions = []
        ret_masks = []

        if isinstance(text_prompts, str):
            text_prompts = [text_prompts]
        for text_prompt in text_prompts:
            # add template for text
            text_prompt = text_prompt.replace(DEFAULT_IMAGE_TOKEN, all_image_token_str)
            input_text = ''
            input_text += self.template['INSTRUCTION'].format(
                input=text_prompt, round=1, bot_name=self.bot_name)

            ids = self.tokenizer.encode(input_text)
            ids = torch.tensor(ids).cuda().unsqueeze(0)

            attention_mask = torch.ones_like(ids, dtype=torch.bool)

            mm_inputs = {
                'pixel_values': input_dict['pixel_values'],
                'input_ids': ids,
                'attention_mask': attention_mask,
                'position_ids': None,
                'past_key_values': None,
                'labels': None
            }

            generate_output = self.mllm.generate(
                **mm_inputs,
                generation_config=self.gen_config,
                streamer=None,
                bos_token_id=self.tokenizer.bos_token_id,
                stopping_criteria=self.stop_criteria,
                output_hidden_states=True,
                return_dict_in_generate=True
            )
            predict = self.tokenizer.decode(
                generate_output.sequences[0], skip_special_tokens=False).strip()
            # print(predict)
            ret_predictions.append(predict)

        return {
            'prediction': ret_predictions
        }

def get_seg_hidden_states(hidden_states, output_ids, seg_id):
    seg_mask = output_ids == seg_id
    n_out = len(seg_mask)
    return hidden_states[-n_out:][seg_mask]

def mask_to_rle(mask):
    rle = []
    for m in mask:
        rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8))))
        rle[-1]['counts'] = rle[-1]['counts'].decode()
    return rle