File size: 4,149 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import copy
import math
import os
import torch
import tqdm
from pycocotools import mask as _mask
import numpy as np
import random

from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig, CLIPImageProcessor,
                          CLIPVisionModel, GenerationConfig)

from utils import _init_dist_pytorch, get_dist_info, get_rank, collect_results_cpu
from datasets import RESDataset

def parse_args():
    parser = argparse.ArgumentParser(description='RefCocoSeg')
    parser.add_argument('model_path', help='hf model path.')
    parser.add_argument(
        '--dataset',
        choices=DATASETS_ATTRIBUTES.keys(),
        default='refcoco',
        help='Specify a ref dataset')
    parser.add_argument(
        '--split',
        default='val',
        help='Specify a split')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args

DATASETS_ATTRIBUTES = {
    'refcoco': {'splitBy': "unc", 'dataset_name': 'refcoco'},
    'refcoco_plus': {'splitBy': "unc", 'dataset_name': 'refcoco_plus'},
    'refcocog': {'splitBy': "umd", 'dataset_name': 'refcocog'},
}

IMAGE_FOLDER = './data/glamm_data/images/coco2014/train2014/'
DATA_PATH = './data/ref_seg/'


def main():
    args = parse_args()

    if args.launcher != 'none':
        _init_dist_pytorch('nccl')
        rank, world_size = get_dist_info()
        torch.cuda.set_device(rank)
    else:
        rank = 0
        world_size = 1

    # build model
    model = AutoModel.from_pretrained(
        args.model_path,
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        use_flash_attn=True,
        trust_remote_code=True,
    ).eval().cuda()

    tokenizer = AutoTokenizer.from_pretrained(
        args.model_path,
        trust_remote_code=True,
    )
    dataset_info = DATASETS_ATTRIBUTES[args.dataset]

    dataset = RESDataset(
        image_folder=IMAGE_FOLDER,
        dataset_name=dataset_info['dataset_name'],
        data_path=DATA_PATH,
        split=args.split,
    )

    results = []
    n_samples = len(dataset)
    per_rank_samples = math.ceil(n_samples / world_size) + 1
    per_rank_ids = range(per_rank_samples * rank,
                         min(n_samples, per_rank_samples * (rank + 1)))
    for idx in tqdm.tqdm(per_rank_ids):
        data_batch = dataset[idx]
        prediction = {'img_id': data_batch['img_id'], 'gt_masks': data_batch['gt_masks']}
        prediction['gt_masks'] = mask_to_rle(prediction['gt_masks'].cpu().numpy())
        del data_batch['img_id'], data_batch['gt_masks']

        texts = data_batch['text']
        del data_batch['text']
        pred_masks = []
        for text in texts:
            _data_batch = copy.deepcopy(data_batch)
            _data_batch['text'] = text
            pred_mask = model.predict_forward(**_data_batch, tokenizer=tokenizer)['prediction_masks']
            if len(pred_mask) == 0:
                # give a zero mask
                print("No seg pred !!!")
                pred_masks.append(None)
            else:
                _ret_mask = pred_mask[0].cpu().numpy()
                _ret_mask = mask_to_rle(_ret_mask)
                pred_masks.append(_ret_mask)

        prediction.update({'prediction_masks': pred_masks})
        results.append(prediction)

    tmpdir = './dist_test_temp_res_' + args.dataset + args.split + args.model_path.replace('/', '').replace('.', '')
    results = collect_results_cpu(results, len(dataset), tmpdir=tmpdir)
    if get_rank() == 0:
        metric = dataset.evaluate(results, './work_dirs')
        print(metric)

def mask_to_rle(mask):
    rle = []
    for m in mask:
        rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8))))
        rle[-1]['counts'] = rle[-1]['counts'].decode()
    return rle

if __name__ == '__main__':
    main()