File size: 1,298 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import argparse
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap

def parse_args():
    parser = argparse.ArgumentParser(description="GLaMM Inference - Region Captioning")

    parser.add_argument("--annotation_file",
                        default="./data/region_caption/mdetr_annotations/finetune_refcocog_val_captions.json", type=str,
                        help="Replace with 'data/visual_genome/test_caption.json' for VG.")
    parser.add_argument("--results_dir", default="results", type=str, help="The path to save the results.")

    return parser.parse_args()


def main():
    args = parse_args()

    # Load the annotation file
    coco = COCO(args.annotation_file)
    coco_result = coco.loadRes(args.results_dir)

    # Create coco_eval object by taking coco and coco_result
    coco_eval = COCOEvalCap(coco, coco_result)

    # Evaluate results
    coco_eval.params['image_id'] = coco_result.getImgIds()
    coco_eval.evaluate()

    # Print and save the output evaluation scores
    output_file_path = f"./region_cap_metrics.txt"
    f = open(output_file_path, 'w')
    for metric, score in coco_eval.eval.items():
        print(f'{metric}: {score:.3f}')
        f.write(f"{metric}: {score:.3f}\n")
    f.close()


if __name__ == "__main__":
    main()