File size: 10,248 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) OpenMMLab. All rights reserved.
import os
from huggingface_hub import snapshot_download
from peft import PeftModel
import torch
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig, CLIPImageProcessor,
                          CLIPVisionModel, GenerationConfig)
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
                          PROMPT_TEMPLATE, SYSTEM_TEMPLATE)

import argparse
import os.path as osp

from mmengine.config import Config, DictAction

from xtuner.configs import cfgs_name_path
from xtuner.registry import BUILDER

TORCH_DTYPE_MAP = dict(
    fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')


def remove_prefix(state_dict, prefix):
    new_state_dict = {}
    for key, value in state_dict.items():
        if key.startswith(prefix):
            new_key = key[len(prefix):]
            new_state_dict[new_key] = value
        else:
            new_state_dict[key] = value
    return new_state_dict


def parse_args():
    parser = argparse.ArgumentParser(description='Chat with a HF model')
    parser.add_argument(
        'model_name_or_path', help='Hugging Face model name or path')
    adapter_group = parser.add_mutually_exclusive_group()
    adapter_group.add_argument(
        '--adapter', default=None, help='adapter name or path')
    parser.add_argument(
        '--config', default='config.py', help='config.py')
    parser.add_argument(
        '--pth-path', default='./converted.pth', help='./converted.pth')
    adapter_group.add_argument(
        '--llava', default=None, help='llava name or path')
    parser.add_argument(
        '--visual-encoder', default=None, help='visual encoder name or path')
    parser.add_argument(
        '--visual-select-layer', default=-2, help='visual select layer')
    parser.add_argument('--image', default=None, help='image')
    parser.add_argument(
        '--torch-dtype',
        default='fp16',
        choices=TORCH_DTYPE_MAP.keys(),
        help='Override the default `torch.dtype` and load the model under '
        'a specific `dtype`.')
    parser.add_argument(
        '--prompt-template',
        choices=PROMPT_TEMPLATE.keys(),
        default=None,
        help='Specify a prompt template')
    system_group = parser.add_mutually_exclusive_group()
    system_group.add_argument(
        '--system', default=None, help='Specify the system text')
    system_group.add_argument(
        '--system-template',
        choices=SYSTEM_TEMPLATE.keys(),
        default=None,
        help='Specify a system template')
    parser.add_argument(
        '--bits',
        type=int,
        choices=[4, 8, None],
        default=None,
        help='LLM bits')
    parser.add_argument(
        '--bot-name', type=str, default='BOT', help='Name for Bot')
    parser.add_argument(
        '--with-plugins',
        nargs='+',
        choices=['calculate', 'solve', 'search'],
        help='Specify plugins to use')
    parser.add_argument(
        '--no-streamer', action='store_true', help='Whether to with streamer')
    parser.add_argument(
        '--lagent', action='store_true', help='Whether to use lagent')
    parser.add_argument(
        '--stop-words', nargs='+', type=str, default=[], help='Stop words')
    parser.add_argument(
        '--offload-folder',
        default=None,
        help='The folder in which to offload the model weights (or where the '
        'model weights are already offloaded).')
    parser.add_argument(
        '--max-new-tokens',
        type=int,
        default=2048,
        help='Maximum number of new tokens allowed in generated text')
    parser.add_argument(
        '--temperature',
        type=float,
        default=0.1,
        help='The value used to modulate the next token probabilities.')
    parser.add_argument(
        '--top-k',
        type=int,
        default=40,
        help='The number of highest probability vocabulary tokens to '
        'keep for top-k-filtering.')
    parser.add_argument(
        '--top-p',
        type=float,
        default=0.75,
        help='If set to float < 1, only the smallest set of most probable '
        'tokens with probabilities that add up to top_p or higher are '
        'kept for generation.')
    parser.add_argument(
        '--repetition-penalty',
        type=float,
        default=1.0,
        help='The parameter for repetition penalty. 1.0 means no penalty.')
    parser.add_argument(
        '--seed',
        type=int,
        default=0,
        help='Random seed for reproducible text generation')
    args = parser.parse_args()
    return args


def get_input():
    """Helper function for getting input from users."""
    sentinel = ''  # ends when this string is seen
    result = None
    while result is None:
        print(('\ndouble enter to end input (EXIT: exit chat, '
               'RESET: reset history) >>> '),
              end='')
        try:
            result = '\n'.join(iter(input, sentinel))
        except UnicodeDecodeError:
            print('Invalid characters detected. Please enter again.')
    return result


def main():
    args = parse_args()
    torch.manual_seed(args.seed)

    # build llm
    quantization_config = None
    load_in_8bit = False
    if args.bits == 4:
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')
    elif args.bits == 8:
        load_in_8bit = True
    model_kwargs = {
        'quantization_config': quantization_config,
        'load_in_8bit': load_in_8bit,
        'device_map': 'auto',
        'offload_folder': args.offload_folder,
        'trust_remote_code': True,
        'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
    }
    if args.with_plugins is None:
        inner_thoughts_open = False
        calculate_open = False
        solve_open = False
        search_open = False
    else:
        assert args.prompt_template == args.system_template == 'moss_sft'
        calculate_open = 'calculate' in args.with_plugins
        solve_open = 'solve' in args.with_plugins
        search_open = 'search' in args.with_plugins
        # pre-import for api and model preparation
        if calculate_open:
            from plugins import calculate  # noqa: F401
        if solve_open:
            from plugins import solve  # noqa: F401
        if search_open:
            from plugins import search  # noqa: F401
    # build llm
    llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
                                               **model_kwargs)
    tokenizer = AutoTokenizer.from_pretrained(
        args.model_name_or_path,
        trust_remote_code=True,
        encode_special_tokens=True)
    print(f'Load LLM from {args.model_name_or_path}')
    if args.adapter is not None:
        llm = PeftModel.from_pretrained(
            llm,
            args.adapter,
            offload_folder=args.offload_folder,
            trust_remote_code=True)
        print(f'Load adapter from {args.adapter}')
    if args.llava is not None:
        llava_path = snapshot_download(
            repo_id=args.llava) if not osp.isdir(
            args.llava) else args.llava

        # build visual_encoder
        if 'visual_encoder' in os.listdir(llava_path):
            assert args.visual_encoder is None, (
                "Please don't specify the `--visual-encoder` since passed "
                '`--llava` contains a visual encoder!')
            visual_encoder_path = osp.join(llava_path, 'visual_encoder')
        else:
            assert args.visual_encoder is not None, (
                'Please specify the `--visual-encoder`!')
            visual_encoder_path = args.visual_encoder
        visual_encoder = CLIPVisionModel.from_pretrained(
            visual_encoder_path,
            torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
        print(f'Load visual_encoder from {visual_encoder_path}')

        # load adapter
        if 'llm_adapter' in os.listdir(llava_path):
            adapter_path = osp.join(llava_path, 'llm_adapter')
            llm = PeftModel.from_pretrained(
                llm,
                adapter_path,
                offload_folder=args.offload_folder,
                trust_remote_code=True)
            print(f'Load LLM adapter from {args.llava}')
        if 'visual_encoder_adapter' in os.listdir(llava_path):
            adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
            visual_encoder = PeftModel.from_pretrained(
                visual_encoder,
                adapter_path,
                offload_folder=args.offload_folder)
            print(f'Load visual_encoder adapter from {args.llava}')

        # build projector
        projector_path = osp.join(llava_path, 'projector')
        projector = AutoModel.from_pretrained(
            projector_path,
            torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype],
            trust_remote_code=True)
        print(f'Load projector from {args.llava}')

        projector.cuda()
        projector.eval()
        visual_encoder.cuda()
        visual_encoder.eval()
    llm.eval()

    if not osp.isfile(args.config):
        try:
            args.config = cfgs_name_path[args.config]
        except KeyError:
            raise FileNotFoundError(f'Cannot find {args.config}')

    # load config
    cfg = Config.fromfile(args.config)
    # if args.cfg_options is not None:
        # cfg.merge_from_dict(args.cfg_options)

    model_name = cfg.model.type if isinstance(cfg.model.type,
                                              str) else cfg.model.type.__name__
    if 'LLaVAModel' or 'OMG' in model_name:
        cfg.model.pretrained_pth = None

    model = BUILDER.build(cfg.model)
    model.llm = llm
    model.visual_encoder = visual_encoder
    model.projector = projector

    state_dict = model.state_dict()
    torch.save(state_dict, args.pth_path)
    print('Save the converted pth to {}'.format(args.pth_path))

if __name__ == '__main__':
    main()