File size: 20,456 Bytes
032e687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import copy
from collections import OrderedDict
from typing import List, Optional, Tuple, Union
from types import MethodType
import torch
import torch.distributed
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from xtuner.registry import BUILDER
from xtuner.model.modules import dispatch_modules
from transformers import AutoModel, AutoConfig, AutoTokenizer, BitsAndBytesConfig
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutput, BaseModelOutputWithPooling
from .modules import VisualPromptEncodeModel
from .utils import (LoadWoInit, traverse_dict, make_inputs_require_grad, find_all_linear_names,
guess_load_checkpoint, get_peft_model_state_dict)
def vision_model_forward_cache(self,
pixel_values: Optional[torch.FloatTensor] = None,
visual_prompt_embeds: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_embeds: Optional[torch.FloatTensor] = None,
)->Union[Tuple, BaseModelOutputWithPooling]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None and pixel_embeds is None:
raise ValueError('You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = torch.cat([
pixel_embeds[:, :1, :], pixel_embeds[:, 1:, :] + visual_prompt_embeds.flatten(2).transpose(1, 2)], dim=1)
else:
if len(pixel_values.shape) == 4:
_pixel_embeds = self.embeddings(pixel_values)
hidden_states = torch.cat([
_pixel_embeds[:, :1, :], _pixel_embeds[:, 1:, :] + visual_prompt_embeds.flatten(2).transpose(1, 2)], dim=1)
else:
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def extract_feature_cache(self,
pixel_values,
visual_prompt_embeds):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
visual_prompt_embeds=visual_prompt_embeds,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
visual_prompt_embeds=visual_prompt_embeds,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
class WrapInternVL(BaseModel):
def __init__(self,
mllm,
tokenizer=None,
freeze_llm=False,
freeze_visual_encoder=False,
freeze_connector=False,
unfreeze_lm_head=False,
llm_lora=None,
visual_encoder_lora=None,
quantization_vit=False,
quantization_llm=False,
pretrained_pth=None,
use_activation_checkpointing=True,
):
super().__init__()
self.freeze_llm = freeze_llm
self.freeze_visual_encoder = freeze_visual_encoder
self.freeze_connector = freeze_connector
self.unfreeze_lm_head = unfreeze_lm_head
self.use_llm_lora = llm_lora is not None
self.use_visual_encoder_lora = visual_encoder_lora is not None
self.quantization_vit = quantization_vit
self.quantization_llm = quantization_llm
self.use_activation_checkpointing=use_activation_checkpointing
if quantization_vit:
assert visual_encoder_lora is not None
if quantization_llm:
assert quantization_llm and llm_lora is not None
config = AutoConfig.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
if config.llm_config.model_type == 'internlm2':
config.llm_config.attn_implementation = 'flash_attention_2'
else:
config.llm_config._attn_implementation = 'flash_attention_2'
if quantization_vit is False and quantization_llm is False:
quantization = None
else:
llm_int8_skip_modules = ['mlp1']
if quantization_llm and not quantization_vit:
llm_int8_skip_modules.append('vision_model')
if quantization_vit and not quantization_llm:
llm_int8_skip_modules.append('language_model')
quantization_config = dict(
type=BitsAndBytesConfig,
llm_int8_skip_modules=llm_int8_skip_modules,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')
quantization_clazz = quantization_config.pop('type')
quantization = quantization_clazz(**quantization_config)
with LoadWoInit():
traverse_dict(mllm)
model_clazz = mllm.pop('type')
mllm.update(dict(quantization_config=quantization, config=config))
# The weights in internvl2 modules have been loaded inside the calling of AutoModel.from_pretrained()
self.model = model_clazz(**mllm)
# self.model.language_model.config.use_cache = False
dispatch_modules(self.model.language_model)
self.model.vision_model.forward = MethodType(vision_model_forward_cache, self.model.vision_model)
self.model.extract_feature = MethodType(extract_feature_cache, self.model)
self.visual_prompt_encoder = VisualPromptEncodeModel(
in_channels=3, vision_hidden_size=config.vision_config.hidden_size,
language_hidden_size=config.llm_config.hidden_size, force_image_size=config.force_image_size,
patch_size=config.vision_config.patch_size, downsample_ratio=config.downsample_ratio).to(
self.model.vision_model.dtype)
if tokenizer is not None:
self.tokenizer = self._build_from_cfg_or_module(tokenizer)
else:
self.tokenizer = AutoTokenizer.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
img_context_token_id = self.tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
self.model.img_context_token_id = img_context_token_id
self._add_special_tokens()
if self.freeze_llm:
self.model.language_model.requires_grad_(False)
if self.freeze_visual_encoder:
self.model.vision_model.requires_grad_(False)
if self.freeze_connector:
self.model.mlp1.requires_grad_(False)
if self.unfreeze_lm_head:
# self.model.language_model.get_output_embeddings().require_grad = True
self.model.language_model.get_output_embeddings().requires_grad_(True)
# for name, param in self.named_parameters():
# if 'tok_' in name or 'lm_head' in name:
# print("Unfrozen {} !!!".format(name))
# param.requires_grad_(True)
# if 'output.' in name and 'llm' in name and 'lora' not in name:
# print("Unfrozen {} !!!".format(name))
# param.requires_grad_(True)
if use_activation_checkpointing:
# it is necessary when using gradient checkpointing
if hasattr(self.model.language_model, 'enable_input_require_grads'):
self.model.language_model.enable_input_require_grads()
else:
self.model.language_model.get_input_embeddings(
).register_forward_hook(make_inputs_require_grad)
self.gradient_checkpointing_enable()
if self.use_llm_lora:
self._prepare_llm_for_lora(llm_lora)
if self.use_visual_encoder_lora:
self._prepare_visual_encoder_for_lora(visual_encoder_lora)
if pretrained_pth is not None:
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
self.load_state_dict(pretrained_state_dict, strict=False) # TODO, check whether the internvl2 weights are loaded correctly.
print(f"Load pretrained weight from {pretrained_pth}")
self._count = 0
print_log(self, logger="current")
print_log('InternVL_V1_5 construction is complete', logger='current')
def _add_special_tokens(self):
assert hasattr(self, "tokenizer")
mark_tokens = [f'<mark{str(ii).zfill(3)}>' for ii in range(100)]
added_tokens_num = self.tokenizer.add_tokens(mark_tokens)
print_log(f'{added_tokens_num} special mark tokens were added successfully.', logger='current')
self.model.language_model.resize_token_embeddings(len(self.tokenizer))
self.mark_token_ids = {mark_token: self.tokenizer(
mark_token, add_special_tokens=False).input_ids[0] for mark_token in mark_tokens}
if self.use_activation_checkpointing or self.use_llm_lora or not self.freeze_llm:
self.model.language_model.enable_input_require_grads()
self.added_special_token = True
return
def _build_from_cfg_or_module(self, cfg_or_mod):
if isinstance(cfg_or_mod, nn.Module):
return cfg_or_mod
elif isinstance(cfg_or_mod, dict):
traverse_dict(cfg_or_mod)
return BUILDER.build(cfg_or_mod)
else:
raise NotImplementedError
def _parse_lora_config(self, lora_config):
if isinstance(lora_config, dict) or isinstance(
lora_config, Config) or isinstance(lora_config, ConfigDict):
lora_config = BUILDER.build(lora_config)
return lora_config
def _prepare_llm_for_lora(self, lora_config, use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
self.model.language_model = prepare_model_for_kbit_training(
self.model.language_model, use_activation_checkpointing)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.model.language_model)
lora_config.target_modules = modules
self.model.language_model = get_peft_model(self.model.language_model, lora_config)
def _prepare_visual_encoder_for_lora(self, lora_config):
lora_config = self._parse_lora_config(lora_config)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.model.vision_model)
lora_config.target_modules = modules
self.model.vision_model = get_peft_model(self.model.vision_model, lora_config)
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.model.language_model.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.model.language_model.gradient_checkpointing_disable()
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
to_return = OrderedDict()
# Step 1. visual_encoder
if self.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.model.vision_model, state_dict=state_dict))
elif not self.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'model.vision_model.' in k
})
# Step 2. LLM
if self.use_llm_lora:
to_return.update(
get_peft_model_state_dict(
self.model.language_model, state_dict=state_dict))
elif not self.freeze_llm:
to_return.update({
k: v
for k, v in state_dict.items() if 'model.language_model.'
})
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'model.mlp1.' in k})
# prompt related models
to_return.update(
{k: v
for k, v in state_dict.items() if 'visual_prompt_encoder.' in k})
# embeds and so on
# vocabulary embedding
to_return.update(
{k: v for k, v in state_dict.items() if 'tok_' in k or 'embed_tokens' in k}
)
# logit head
to_return.update(
{k: v for k, v in state_dict.items() if
('output.' in k or 'lm_head' in k) and 'llm' in k and 'lora' not in k}
)
return to_return
def init_weights(self):
pass
def forward(self, data, data_samples=None, mode='loss'):
pixel_values = data['pixel_values'].to(self.model.vision_model.dtype)
visual_prompts = data['visual_prompts'].to(self.model.vision_model.dtype)
merged_visual_prompts = data['merged_visual_prompts'].to(self.model.vision_model.dtype)
num_patches = data['num_patches']
num_vprompts = data['num_vprompts']
sampled_mark_token_ids = data['sampled_mark_token_ids']
# print('pixel values: ', pixel_values.shape)
# print('visual prompts: ', visual_prompts.shape)
# print('merged visual prompt: ', merged_visual_prompts.shape)
# print('num patches: ', num_patches)
# print('num_vprompts: ', num_vprompts)
# exit(0)
sampled_mark_tokens = [f'<mark{str(ii.item()).zfill(3)}>' for ii in sampled_mark_token_ids]
sampled_mark_token_ids = torch.tensor(
[self.mark_token_ids[mark_token] for mark_token in sampled_mark_tokens],
dtype=torch.long).to("cuda")
# print("sampled mark tokens: ", sampled_mark_tokens)
# print("sampled mark token ids: ", sampled_mark_token_ids)
mark_embeddings = self.model.language_model.get_input_embeddings()(sampled_mark_token_ids)
visual_prompts_patch_embeds = self.visual_prompt_encoder(
merged_visual_prompts, visual_prompts, mark_embeddings, num_patches, num_vprompts)
input_ids = data['input_ids']
position_ids = data['position_ids']
attention_mask = data['attention_mask']
image_flags = data['image_flags']
labels = data['labels']
use_cache = False
outputs = self._llm_forward(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
image_flags=image_flags,
pixel_values=pixel_values,
labels=labels,
use_cache=use_cache,
visual_prompt_embeds=visual_prompts_patch_embeds,
)
loss_dict = {'loss': outputs.loss}
if mode == 'loss':
return loss_dict
else:
raise NotImplementedError
def _llm_forward(
self,
pixel_values: torch.FloatTensor,
visual_prompt_embeds: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None \
else self.model.config.use_return_dict
image_flags = image_flags.squeeze(-1)
# We only added the clone code here to avoid the error. Error will be thrown in the below try...except... codes
input_embeds = self.model.language_model.get_input_embeddings()(input_ids).clone()
# input_embeds = self.model.language_model.get_input_embeddings()(input_ids)
vit_embeds = self.model.extract_feature(pixel_values, visual_prompt_embeds)
# vit_embeds = self.model.extract_feature(pixel_values)
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B*N, C)
if torch.distributed.get_rank() == 0 and self._count % 100 == 0:
print(f"dynamic ViT batch size: {vit_batch_size}, "
f"images per sample: {vit_batch_size}/B, "
f"dynamic token length: {N}")
self._count += 1
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.model.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C).to(input_embeds.dtype)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f"warning: {e}, input_embeds[selected].shape="
f"{input_embeds[selected].shape}, "
f"vit_embeds.shape={vit_embeds.shape}")
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token].to(input_embeds.dtype)
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.model.language_model(
inputs_embeds = input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shit so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.model.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits, ) + outputs[1:]
return (loss, ) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|