File size: 20,456 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import copy
from collections import OrderedDict
from typing import List, Optional, Tuple, Union
from types import MethodType
import torch
import torch.distributed
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training

from xtuner.registry import BUILDER
from xtuner.model.modules import dispatch_modules
from transformers import AutoModel, AutoConfig, AutoTokenizer, BitsAndBytesConfig
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutput, BaseModelOutputWithPooling
from .modules import VisualPromptEncodeModel
from .utils import (LoadWoInit, traverse_dict, make_inputs_require_grad, find_all_linear_names,
                    guess_load_checkpoint, get_peft_model_state_dict)


def vision_model_forward_cache(self,
                               pixel_values: Optional[torch.FloatTensor] = None,
                               visual_prompt_embeds: Optional[torch.FloatTensor] = None,
                               output_hidden_states: Optional[bool] = None,
                               return_dict: Optional[bool] = None,
                               pixel_embeds: Optional[torch.FloatTensor] = None,
                               )->Union[Tuple, BaseModelOutputWithPooling]:
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    if pixel_values is None and pixel_embeds is None:
        raise ValueError('You have to specify pixel_values or pixel_embeds')
    
    if pixel_embeds is not None:
        hidden_states = torch.cat([
            pixel_embeds[:, :1, :], pixel_embeds[:, 1:, :] + visual_prompt_embeds.flatten(2).transpose(1, 2)], dim=1)
    else:
        if len(pixel_values.shape) == 4:
            _pixel_embeds = self.embeddings(pixel_values)
            hidden_states = torch.cat([
                _pixel_embeds[:, :1, :], _pixel_embeds[:, 1:, :] + visual_prompt_embeds.flatten(2).transpose(1, 2)], dim=1)
        else:
            raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
    encoder_outputs = self.encoder(
        inputs_embeds=hidden_states,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )
    last_hidden_state = encoder_outputs.last_hidden_state
    pooled_output = last_hidden_state[:, 0, :]

    if not return_dict:
        return (last_hidden_state, pooled_output) + encoder_outputs[1:]
    
    return BaseModelOutputWithPooling(
        last_hidden_state=last_hidden_state,
        pooler_output=pooled_output,
        hidden_states=encoder_outputs.hidden_states,
        attentions=encoder_outputs.attentions,
    )


def extract_feature_cache(self, 
                          pixel_values, 
                          visual_prompt_embeds):
    if self.select_layer == -1:
        vit_embeds = self.vision_model(
            pixel_values=pixel_values,
            visual_prompt_embeds=visual_prompt_embeds,
            output_hidden_states=False,
            return_dict=True).last_hidden_state
    else:
        vit_embeds = self.vision_model(
            pixel_values=pixel_values,
            visual_prompt_embeds=visual_prompt_embeds,
            output_hidden_states=True,
            return_dict=True).hidden_states[self.select_layer]
    vit_embeds = vit_embeds[:, 1:, :]

    h = w = int(vit_embeds.shape[1] ** 0.5)
    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
    vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
    vit_embeds = self.mlp1(vit_embeds)
    return vit_embeds


class WrapInternVL(BaseModel):
    def __init__(self, 
                 mllm,
                 tokenizer=None,
                 freeze_llm=False,
                 freeze_visual_encoder=False,
                 freeze_connector=False,
                 unfreeze_lm_head=False,
                 llm_lora=None,
                 visual_encoder_lora=None,
                 quantization_vit=False,
                 quantization_llm=False,
                 pretrained_pth=None,
                 use_activation_checkpointing=True,
                 ):
        super().__init__()

        self.freeze_llm = freeze_llm
        self.freeze_visual_encoder = freeze_visual_encoder
        self.freeze_connector = freeze_connector
        self.unfreeze_lm_head = unfreeze_lm_head
        self.use_llm_lora = llm_lora is not None
        self.use_visual_encoder_lora = visual_encoder_lora is not None
        self.quantization_vit = quantization_vit
        self.quantization_llm = quantization_llm
        self.use_activation_checkpointing=use_activation_checkpointing
        if quantization_vit:
            assert visual_encoder_lora is not None
        if quantization_llm:
            assert quantization_llm and llm_lora is not None

        config = AutoConfig.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
        if config.llm_config.model_type == 'internlm2':
            config.llm_config.attn_implementation = 'flash_attention_2'
        else:
            config.llm_config._attn_implementation = 'flash_attention_2'

        if quantization_vit is False and quantization_llm is False:
            quantization = None
        else:
            llm_int8_skip_modules = ['mlp1']
            if quantization_llm and not quantization_vit:
                llm_int8_skip_modules.append('vision_model')
            
            if quantization_vit and not quantization_llm:
                llm_int8_skip_modules.append('language_model')
            
            quantization_config = dict(
                type=BitsAndBytesConfig,
                llm_int8_skip_modules=llm_int8_skip_modules,
                load_in_4bit=True,
                load_in_8bit=False,
                llm_int8_threshold=6.0,
                llm_int8_has_fp16_weight=False,
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type='nf4')
            quantization_clazz = quantization_config.pop('type')
            quantization = quantization_clazz(**quantization_config)

        with LoadWoInit():
            traverse_dict(mllm)
            model_clazz = mllm.pop('type')
            mllm.update(dict(quantization_config=quantization, config=config))
            # The weights in internvl2 modules have been loaded inside the calling of AutoModel.from_pretrained()
            self.model = model_clazz(**mllm)
        # self.model.language_model.config.use_cache = False
        dispatch_modules(self.model.language_model)
        
        self.model.vision_model.forward = MethodType(vision_model_forward_cache, self.model.vision_model)
        self.model.extract_feature = MethodType(extract_feature_cache, self.model)
        self.visual_prompt_encoder = VisualPromptEncodeModel(
            in_channels=3, vision_hidden_size=config.vision_config.hidden_size, 
            language_hidden_size=config.llm_config.hidden_size, force_image_size=config.force_image_size,
            patch_size=config.vision_config.patch_size, downsample_ratio=config.downsample_ratio).to(
            self.model.vision_model.dtype)
        
        if tokenizer is not None:
            self.tokenizer = self._build_from_cfg_or_module(tokenizer)
        else:
            self.tokenizer = AutoTokenizer.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
        img_context_token_id = self.tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
        self.model.img_context_token_id = img_context_token_id
        self._add_special_tokens()

        if self.freeze_llm:
            self.model.language_model.requires_grad_(False)
        if self.freeze_visual_encoder:
            self.model.vision_model.requires_grad_(False)
        if self.freeze_connector:
            self.model.mlp1.requires_grad_(False)
        if self.unfreeze_lm_head:
            # self.model.language_model.get_output_embeddings().require_grad = True
            self.model.language_model.get_output_embeddings().requires_grad_(True)
            # for name, param in self.named_parameters():
            #     if 'tok_' in name or 'lm_head' in name:
            #         print("Unfrozen {} !!!".format(name))
            #         param.requires_grad_(True)
            #     if 'output.' in name and 'llm' in name and 'lora' not in name:
            #         print("Unfrozen {} !!!".format(name))
            #         param.requires_grad_(True)
        
        if use_activation_checkpointing:
            # it is necessary when using gradient checkpointing
            if hasattr(self.model.language_model, 'enable_input_require_grads'):
                    self.model.language_model.enable_input_require_grads()
            else:
                self.model.language_model.get_input_embeddings(
                ).register_forward_hook(make_inputs_require_grad)
        
        self.gradient_checkpointing_enable()
        
        if self.use_llm_lora:
            self._prepare_llm_for_lora(llm_lora)
        
        if self.use_visual_encoder_lora:
            self._prepare_visual_encoder_for_lora(visual_encoder_lora)
        
        if pretrained_pth is not None:
            pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
            self.load_state_dict(pretrained_state_dict, strict=False)  # TODO, check whether the internvl2 weights are loaded correctly.
            print(f"Load pretrained weight from {pretrained_pth}")

        self._count = 0
        print_log(self, logger="current")
        print_log('InternVL_V1_5 construction is complete', logger='current')
    
    def _add_special_tokens(self):
        assert hasattr(self, "tokenizer")
        
        mark_tokens = [f'<mark{str(ii).zfill(3)}>' for ii in range(100)]
        added_tokens_num = self.tokenizer.add_tokens(mark_tokens)
        print_log(f'{added_tokens_num} special mark tokens were added successfully.', logger='current')
        
        self.model.language_model.resize_token_embeddings(len(self.tokenizer))
        
        self.mark_token_ids = {mark_token: self.tokenizer(
            mark_token, add_special_tokens=False).input_ids[0] for mark_token in mark_tokens}

        if self.use_activation_checkpointing or self.use_llm_lora or not self.freeze_llm:
            self.model.language_model.enable_input_require_grads()
        self.added_special_token = True
        
        return

    def _build_from_cfg_or_module(self, cfg_or_mod):
        if isinstance(cfg_or_mod, nn.Module):
            return cfg_or_mod
        elif isinstance(cfg_or_mod, dict):
            traverse_dict(cfg_or_mod)
            return BUILDER.build(cfg_or_mod)
        else:
            raise NotImplementedError

    def _parse_lora_config(self, lora_config):
        if isinstance(lora_config, dict) or isinstance(
            lora_config, Config) or isinstance(lora_config, ConfigDict):
            lora_config = BUILDER.build(lora_config)
        return lora_config

    def _prepare_llm_for_lora(self, lora_config, use_activation_checkpointing=True):
        lora_config = self._parse_lora_config(lora_config)
        self.model.language_model = prepare_model_for_kbit_training(
            self.model.language_model, use_activation_checkpointing)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.model.language_model)
            lora_config.target_modules = modules
        self.model.language_model = get_peft_model(self.model.language_model, lora_config)

    def _prepare_visual_encoder_for_lora(self, lora_config):
        lora_config = self._parse_lora_config(lora_config)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.model.vision_model)
            lora_config.target_modules = modules
        self.model.vision_model = get_peft_model(self.model.vision_model, lora_config)

    def gradient_checkpointing_enable(self):
        self.activation_checkpointing_enable()

    def activation_checkpointing_enable(self):
        self.model.language_model.gradient_checkpointing_enable()
    
    def gradient_checkpointing_disable(self):
        self.activation_checkpointing_disable()

    def activation_checkpointing_disable(self):
        self.model.language_model.gradient_checkpointing_disable()
    
    def state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)
        to_return = OrderedDict()

        # Step 1. visual_encoder
        if self.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.model.vision_model, state_dict=state_dict))
        elif not self.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'model.vision_model.' in k
            })
        # Step 2. LLM
        if self.use_llm_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.model.language_model, state_dict=state_dict))
        elif not self.freeze_llm:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'model.language_model.'
            })
        # Step 3. Projector
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'model.mlp1.' in k})

        # prompt related models
        to_return.update(
            {k: v
             for k, v in state_dict.items() if 'visual_prompt_encoder.' in k})

        # embeds and so on
        # vocabulary embedding
        to_return.update(
            {k: v for k, v in state_dict.items() if 'tok_' in k or 'embed_tokens' in k}
        )
        # logit head
        to_return.update(
            {k: v for k, v in state_dict.items() if
             ('output.' in k or 'lm_head' in k) and 'llm' in k and 'lora' not in k}
        )

        return to_return
    
    def init_weights(self):
        pass

    def forward(self, data, data_samples=None, mode='loss'):
        pixel_values = data['pixel_values'].to(self.model.vision_model.dtype)
        visual_prompts = data['visual_prompts'].to(self.model.vision_model.dtype)
        merged_visual_prompts = data['merged_visual_prompts'].to(self.model.vision_model.dtype)
        num_patches = data['num_patches']
        num_vprompts = data['num_vprompts']
        sampled_mark_token_ids = data['sampled_mark_token_ids']

        # print('pixel values: ', pixel_values.shape)
        # print('visual prompts: ', visual_prompts.shape)
        # print('merged visual prompt: ', merged_visual_prompts.shape)
        # print('num patches: ', num_patches)
        # print('num_vprompts: ', num_vprompts)
        # exit(0)
        
        sampled_mark_tokens = [f'<mark{str(ii.item()).zfill(3)}>' for ii in sampled_mark_token_ids]
        sampled_mark_token_ids = torch.tensor(
            [self.mark_token_ids[mark_token] for mark_token in sampled_mark_tokens], 
            dtype=torch.long).to("cuda")
        # print("sampled mark tokens: ", sampled_mark_tokens)
        # print("sampled mark token ids: ", sampled_mark_token_ids)
        mark_embeddings = self.model.language_model.get_input_embeddings()(sampled_mark_token_ids)
     
        visual_prompts_patch_embeds = self.visual_prompt_encoder(
            merged_visual_prompts, visual_prompts, mark_embeddings, num_patches, num_vprompts)

        input_ids = data['input_ids']
        position_ids = data['position_ids']
        attention_mask = data['attention_mask']
        image_flags = data['image_flags']

        labels = data['labels']
        use_cache = False

        outputs = self._llm_forward(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            image_flags=image_flags,
            pixel_values=pixel_values,
            labels=labels,
            use_cache=use_cache,
            visual_prompt_embeds=visual_prompts_patch_embeds,
        )
        loss_dict = {'loss': outputs.loss}
        if mode == 'loss':
            return loss_dict
        else:
            raise NotImplementedError

    def _llm_forward(
        self,
        pixel_values: torch.FloatTensor,
        visual_prompt_embeds: torch.FloatTensor,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        image_flags: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None \
            else self.model.config.use_return_dict
        
        image_flags = image_flags.squeeze(-1)
        # We only added the clone code here to avoid the error. Error will be thrown in the below try...except... codes
        input_embeds = self.model.language_model.get_input_embeddings()(input_ids).clone()
        # input_embeds = self.model.language_model.get_input_embeddings()(input_ids)

        vit_embeds = self.model.extract_feature(pixel_values, visual_prompt_embeds)
        # vit_embeds = self.model.extract_feature(pixel_values)
        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B*N, C)

        if torch.distributed.get_rank() == 0 and self._count % 100 == 0:
            print(f"dynamic ViT batch size: {vit_batch_size}, "
                  f"images per sample: {vit_batch_size}/B, "
                  f"dynamic token length: {N}")
        self._count += 1

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.model.img_context_token_id)
   
        try:
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C).to(input_embeds.dtype)
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f"warning: {e}, input_embeds[selected].shape="
                  f"{input_embeds[selected].shape}, "
                  f"vit_embeds.shape={vit_embeds.shape}")
            n_token = selected.sum()
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token].to(input_embeds.dtype)
        
        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.model.language_model(
            inputs_embeds = input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shit so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.model.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
        
        if not return_dict:
            output = (logits, ) + outputs[1:]
            return (loss, ) + output if loss is not None else output
        
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )