File size: 5,262 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import json
import logging
import os 
import copy
from typing import Any

import torch
from torch.utils.data import Dataset
import torchvision.transforms as T
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk

from mmengine import print_log
from mmengine.config import Config, ConfigDict

from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset

from projects.lisa.multiprocess_eval_refcoco import template


class OspreyRegionCaptionDataset(Dataset):
    def __init__(self,
                 image_folder,
                 image_processor,
                 data_path=None,
                 tokenizer=None,
                 offline_processed_text_folder=None,
                 max_dataset_length=None,
                 dataset_map_fn=None,
                 template_map_fn=None,
                 max_length=2048,
                 pad_image_to_square=False,
                 num_proc=32,
                 lazy=False,
                 repeats=1):
        super().__init__()

        assert offline_processed_text_folder or (data_path and tokenizer)
        self.lazy = lazy

        self.max_length = max_length
        self.dataset_map_fn = dataset_map_fn
        self.template_map_fn = template_map_fn
        if isinstance(self.template_map_fn, dict) and self.lazy:
            _type = self.template_map_fn.pop('type')
            self.template_map_fn = _type(**self.template_map_fn)
        
        if offline_processed_text_folder and data_path:
            print_log(
                'Both `offline_processed_text_folder` and '
                '`data_path` are set, and we load dataset from'
                '`offline_processed_text_folder` '
                f'({offline_processed_text_folder})',
                logger='current',
                level=logging.WARNING)
        
        if offline_processed_text_folder is not None:
            raise NotImplementedError
        else:
            json_data = self.json_file_preprocess(data_path)
            self.json_data = json_data
            json_data = self.filter_hf_require_infos(json_data)
            # hf_json_data = DatasetDict({"train": HFDataset.from_list(json_data)})
            if self.lazy:
                self.text_data = build_origin_dataset(json_data, 'train')
            else:
                raise NotImplementedError
        
        self.image_folder = image_folder
        size = image_processor.crop_size
        if isinstance(size, int):
            self.image_h, self.image_w = size, size
        else:
            self.image_w, self.image_h = size
        
        if isinstance(image_processor, dict) or isinstance(
                image_processor, Config) or isinstance(image_processor,
                                                       ConfigDict):
            self.image_processor = BUILDER.build(image_processor)
        else:
            self.image_processor = image_processor
        self.pad_image_to_square = pad_image_to_square
        self.down_ratio = 1
        self.repeats = repeats
        self.tokenizer = tokenizer
        self.transformer = T.Compose([
            T.Lambda(lambda img: img.convert('RGB')
                     if img.mode != 'RGB' else img),
            T.Resize((self.image_size, self.image_size))
        ])

    
    def filter_hf_require_infos(self, dataset_infos):
        ret = {}
        for dataset_info in dataset_infos:
            description = dataset_info["description"]
            image = dataset_info["file_name"]
            required_info = {"image": image, "description": description}
            ret.append(required_info)
        return ret

    def json_file_preprocess(self, data_path):
        with open(data_path, 'r') as f:
            json_file = json.load(f)
        
        ret = []
        for item in json_file:
            item.update({'image': item['file_name']})
            if len(item["description"]) != len(item["annotation"]):
                print("The number of description is not equal to seg !!!")
            else:
                ret.append(item)
            
        return ret
    
    @property
    def modality_length(self):
        length_list = []
        for data_dict in self.text_data:
            if self.lazy:
                cur_len = 100
            else:
                cur_len = len(data_dict['input_ids'])
                if data_dict.get('image', None) is None:
                    cur_len = -cur_len
            length_list.append(cur_len)
        return length_list
    
    def __len__(self):
        return len(self.text_data) * self.repeats

    def real_len(self):
        return len(self.text_data)
    
    def multi_modal_get_item(self, data_item):
        # Build transformtion function
        return


    def __getitem__(self, index) -> Any:
        index = index % self.real_len()
        data_dict = copy.deepcopy(self.json_data[index])
        data_dict.update(self.text_data[index])

        if self.lazy:
            result = self.dataset_map_fn(data_dict)
            data_dict.update(result)
            assert 'image' in data_dict.keys()
            if data_dict.get('image', None) is not None:
                image_file = data_dict['image']