File size: 4,560 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import copy
import os
import json
import random

from PIL import Image, ImageDraw
import numpy as np

def parse_anno(path):
    with open(path, 'r') as f:
        datas = f.readlines()

    all_objects_ret = {}
    for data in datas:
        data = data.replace("\n", "").strip().split(",")
        frame_idx = int(data[0]) - 1
        object_id = data[1]
        bbox = [int(data[2]), int(data[3]), int(data[4]), int(data[5])]
        if object_id not in all_objects_ret:
            all_objects_ret[object_id] = [None] * 10000
        all_objects_ret[object_id][frame_idx] = bbox
    return all_objects_ret

# create and set the save path
if not os.path.exists('./achieved'):
    os.mkdir('./achieved')
if not os.path.exists('./achieved/images/'):
    os.mkdir('./achieved/images')

save_image_path = './achieved/images'
save_json_path = './achieved/anno.json'

final_json_data = {
    "task": "video object tracking, crowd video, long",
    "data_source": "DanceTrack",
    "type": "comprehension",
    "modality": {
        "in": ["image", "text"],
        "out": ["text"]
    },
    "version": 1.0,
}

src_frames_folder = 'val/'

_PER_NUMBER=10
_SAMPLE_FRAMES=1000

split_data_list = {'person': []}

_id = 11000
for instance_name in os.listdir(src_frames_folder):
    _split = 'person'
    _sub_nums = 1

    if len(split_data_list[_split]) >= _PER_NUMBER:
        continue

    anno_file_path = os.path.join(src_frames_folder, instance_name, "gt/gt.txt")
    objects_anno_bboxes = parse_anno(anno_file_path)

    cur_video_folder = os.path.join(src_frames_folder, instance_name, "img1")
    frame_names = os.listdir(cur_video_folder)
    len_frames = len(frame_names)

    print(instance_name)

    frame_steps = len_frames // _sub_nums
    for _sub_idx in range(_sub_nums):
        _cur_object_ids = random.randint(0, len(list(objects_anno_bboxes.keys()))-1)
        anno_bboxes = objects_anno_bboxes[list(objects_anno_bboxes.keys())[_cur_object_ids]]
        frame_start_idx = _sub_idx * frame_steps
        frame_end_idx = min(frame_start_idx+_SAMPLE_FRAMES+1, len_frames)

        while anno_bboxes[frame_start_idx] is None:
            _cur_object_ids = random.randint(0, len(list(objects_anno_bboxes.keys())) - 1)
            anno_bboxes = objects_anno_bboxes[list(objects_anno_bboxes.keys())[_cur_object_ids]]
            frame_start_idx = _sub_idx * frame_steps
            frame_end_idx = min(frame_start_idx + _SAMPLE_FRAMES + 1, len_frames)

        selected_frames_idxs = list(range(frame_start_idx, frame_end_idx))
        random.shuffle(selected_frames_idxs)
        selected_frames_idxs = selected_frames_idxs[:_SAMPLE_FRAMES]
        selected_frames_idxs.sort()

        # copy the images
        str_id = str(_id)[1:]
        _id += 1
        drt_folder = os.path.join('./achieved/images/', str_id)
        if not os.path.exists(drt_folder):
            os.mkdir(drt_folder)
        for select_frame_idx in selected_frames_idxs:
            frame_name = frame_names[select_frame_idx]
            os.system(f"cp {os.path.join(cur_video_folder, frame_name)} {drt_folder}")

        # parse anno and generate json
        selected_anns = []
        print(len(anno_bboxes), '--', selected_frames_idxs)
        for select_frame_idx in selected_frames_idxs:
            selected_anns.append(anno_bboxes[select_frame_idx])

        _data = {"id": "vt_crowd{}".format(str_id)}
        _data["input"] = {"video_folder": drt_folder.replace('/achieved', ''), "prompt": "Please tracking the object within red box in image 1."}
        _data["output"] = {"bboxes": selected_anns}

        # draw first frame
        # print(frame_names)
        # print(selected_frames_idxs)
        first_frame = Image.open(os.path.join(drt_folder, frame_names[selected_frames_idxs[0]]))
        draw = ImageDraw.Draw(first_frame)
        draw.rectangle([selected_anns[0][0], selected_anns[0][1],
                        selected_anns[0][2] + selected_anns[0][0],
                        selected_anns[0][3] + selected_anns[0][1]], outline='red', width=2)
        first_frame.save(os.path.join(drt_folder, frame_names[selected_frames_idxs[0]].replace('.jpg', '_draw.jpg')))
        split_data_list[_split].append(_data)

for _split in split_data_list.keys():
    with open(f'./achieved/{_split}_long.json', 'w') as f:
        print(len(split_data_list[_split]))
        _data = split_data_list[_split]
        _ret_data = copy.deepcopy(final_json_data)
        _ret_data["task"] += f", {_split}_long"
        _ret_data["data"] = _data
        json.dump(_ret_data, f)