File size: 17,591 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.modeling_outputs import ModelOutput
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from transformers.models.llava.modeling_llava import (_CONFIG_FOR_DOC,
                                                      LLAVA_START_DOCSTRING, LLAVA_INPUTS_DOCSTRING,
                                                      LlavaForConditionalGeneration)


@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
class LlavaCausalLMOutputWithPast(ModelOutput):
    """
    Base class for Llava causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
            sequence_length, hidden_size)`.

            image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    image_to_overwrite: Optional[Tuple[torch.BoolTensor]] = None
    mask_ids: Optional[Tuple[torch.LongTensor]] = None
    labels: Optional[Tuple[torch.LongTensor]] = None


@add_start_docstrings(
    """The LLAVA model which consists of a vision backbone and a language model.""",
    LLAVA_START_DOCSTRING,
)
class CustomLlavaForConditionalGeneration(LlavaForConditionalGeneration):
    def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels,
                                             mask_ids=None):
        num_images, num_image_patches, embed_dim = image_features.shape
        batch_size, sequence_length = input_ids.shape
        left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
        # 1. Create a mask to know where special image tokens are
        special_image_token_mask = input_ids == self.config.image_token_index
        num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
        # Compute the maximum embed dimension
        max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
        batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)

        # 2. Compute the positions where text should be written
        # Calculate new positions for text tokens in merged image-text sequence.
        # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
        # `torch.cumsum` computes how each image token shifts subsequent text token positions.
        # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
        new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
        nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
        if left_padding:
            new_token_positions += nb_image_pad[:, None]  # offset for left padding
        text_to_overwrite = new_token_positions[batch_indices, non_image_indices]

        # 3. Create the full embedding, already padded to the maximum position
        final_embedding = torch.zeros(
            batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
        )
        final_attention_mask = torch.zeros(
            batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
        )
        if labels is not None:
            final_labels = torch.full(
                (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
            )

        if mask_ids is not None:
            final_mask_ids = torch.full(
                (batch_size, max_embed_dim), -1, dtype=input_ids.dtype, device=input_ids.device
            )

        # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
        # set the corresponding tensors into their correct target device.
        target_device = inputs_embeds.device
        batch_indices, non_image_indices, text_to_overwrite = (
            batch_indices.to(target_device),
            non_image_indices.to(target_device),
            text_to_overwrite.to(target_device),
        )
        attention_mask = attention_mask.to(target_device)

        # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
        # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
        final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
        final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
        if labels is not None:
            final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
        if mask_ids is not None:
            final_mask_ids[batch_indices, text_to_overwrite] = mask_ids[batch_indices, non_image_indices]

        # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
        image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
        image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)

        if image_to_overwrite.sum() != image_features.shape[:-1].numel():
            raise ValueError(
                f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
                f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
            )

        final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
        final_attention_mask |= image_to_overwrite
        position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)

        # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
        batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
        indices_to_mask = new_token_positions[batch_indices, pad_indices]

        final_embedding[batch_indices, indices_to_mask] = 0

        if labels is None:
            final_labels = None
        if mask_ids is None:
            final_mask_ids = None

        return final_embedding, final_attention_mask, final_labels, position_ids, final_mask_ids, image_to_overwrite

    @add_start_docstrings_to_model_forward(LLAVA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        vision_feature_layer: Optional[int] = None,
        vision_feature_select_strategy: Optional[str] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        mask_ids: Optional[torch.LongTensor] = None,
        image_to_overwrite: Optional[torch.BoolTensor] = None,
    ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, LlavaForConditionalGeneration

        >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
        >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")

        >>> prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=prompt, images=image, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_length=30)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "\nUSER: What's the content of the image?\nASSISTANT: The image features a stop sign on a street corner"
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        vision_feature_layer = (
            vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
        )
        vision_feature_select_strategy = (
            vision_feature_select_strategy
            if vision_feature_select_strategy is not None
            else self.config.vision_feature_select_strategy
        )

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            inputs_embeds = self.get_input_embeddings()(input_ids)

            # 2. Merge text and images
            if pixel_values is not None and input_ids.shape[1] != 1:
                image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
                # this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
                selected_image_feature = image_outputs.hidden_states[vision_feature_layer]

                if vision_feature_select_strategy == "default":
                    selected_image_feature = selected_image_feature[:, 1:]
                elif vision_feature_select_strategy == "full":
                    selected_image_feature = selected_image_feature
                else:
                    raise ValueError(
                        f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
                    )

                image_features = self.multi_modal_projector(selected_image_feature)
                inputs_embeds, attention_mask, labels, position_ids, mask_ids, image_to_overwrite \
                    = self._merge_input_ids_with_image_features(image_features,
                                                                inputs_embeds, input_ids, attention_mask, labels,
                                                                mask_ids=mask_ids)
                if labels is None:
                    labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)

            # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
            # generation with cache
            elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
                # Retrieve the first layer to inspect the logits and mask out the hidden states
                # that are set to 0
                first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)

                # Get the target length
                target_length = input_ids.shape[1]
                past_length = first_layer_past_key_value.shape[-1]

                extended_attention_mask = torch.ones(
                    (attention_mask.shape[0], past_length),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )

                # Filter out only the tokens that can be un-attended, this can happen
                # if one uses Llava + Fused modules where the cache on the
                # first iteration is already big enough, or if one passes custom cache
                valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                new_batch_index = batch_index[valid_indices]
                new_non_attended_tokens = non_attended_tokens[valid_indices]

                # Zero-out the places where we don't need to attend
                extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0

                attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs[0]

        loss = None
        # if labels is not None:
        #     # Shift so that tokens < n predict n
        #     if attention_mask is not None:
        #         shift_attention_mask = attention_mask[..., 1:]
        #         shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
        #         shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
        #     else:
        #         shift_logits = logits[..., :-1, :].contiguous()
        #         shift_labels = labels[..., 1:].contiguous()
        #     # Flatten the tokens
        #     loss_fct = nn.CrossEntropyLoss()
        #     loss = loss_fct(
        #         shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
        #     )

        assert return_dict, "Use dict in our implementation"

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return LlavaCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_to_overwrite=image_to_overwrite,
            mask_ids=mask_ids,
            labels=labels,
        )