File size: 49,564 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
import os
import copy
from collections import OrderedDict
from typing import List, Optional, Tuple, Union
from types import MethodType
from enum import Enum
import torch
import torch.amp
import torch.distributed
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from safetensors.torch import load_file
from safetensors import safe_open

import torch.utils
import torch.utils.checkpoint
from xtuner.registry import BUILDER
from xtuner.model.modules import dispatch_modules
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from transformers import AutoModel, AutoConfig, AutoTokenizer, BitsAndBytesConfig, GenerationConfig, AutoImageProcessor
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutput, BaseModelOutputWithPooling
from transformers import ConvNextV2ForImageClassification
from .utils import (LoadWoInit, traverse_dict, make_inputs_require_grad, find_all_linear_names,
                    guess_load_checkpoint, get_peft_model_state_dict)
from ..dataset.utils import (get_conv_template, IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN,
                             VPT_CONTEXT_TOKEN, VPT_START_TOKEN, VPT_END_TOKEN)


class WrapInternVL(BaseModel):
    def __init__(self, 
                 mllm,
                 tokenizer=None,
                 freeze_llm=False,
                 freeze_visual_encoder=False,
                 freeze_connector=False,
                 freeze_ot_mlp=False,
                 unfreeze_vocab=False,
                 unfreeze_lm_head=False,
                 llm_lora=None,
                 visual_encoder_lora=None,
                 pretrained_pth=None,
                 radio_pretrained_pth=None,
                 use_activation_checkpointing=True,
                 vocab_embeds_name="tok_embeddings",
                 lm_head_name="output",
                 contras_loss=False,
                 use_object_tokens=False,
                 object_tokenizer=None,
                 object_tokenizer_pretrain=False,
                 ):
        super().__init__()
        
        self.freeze_llm = freeze_llm
        self.freeze_visual_encoder = freeze_visual_encoder
        self.freeze_connector = freeze_connector
        self.freeze_ot_mlp = freeze_ot_mlp
        self.unfreeze_vocab = unfreeze_vocab
        self.unfreeze_lm_head = unfreeze_lm_head
        self.use_llm_lora = llm_lora is not None
        self.use_visual_encoder_lora = visual_encoder_lora is not None
        self.use_activation_checkpointing=use_activation_checkpointing
        self.vocab_embeds_name = vocab_embeds_name
        self.lm_head_name = lm_head_name
        self.contras_loss = contras_loss
        self.object_tokenizer_pretrain=object_tokenizer_pretrain

        config = AutoConfig.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
        self.config = config
        if config.llm_config.model_type == 'internlm2':
            config.llm_config.attn_implementation = 'flash_attention_2'
        else:
            config.llm_config._attn_implementation = 'flash_attention_2'

        traverse_dict(mllm)
        model_clazz = mllm.pop('type')
        mllm.update(dict(config=config))
        self.model = model_clazz(**mllm)
        self.model.language_model.config.use_cache = False
        dispatch_modules(self.model.language_model)

        if use_object_tokens:
            # 1280
            ot_config = AutoConfig.from_pretrained(object_tokenizer["pretrained_model_name_or_path"], trust_remote_code=True)
            self.ot_config = ot_config
            traverse_dict(object_tokenizer)
            ot_clazz = object_tokenizer.pop('type')
            self.object_tokenizer = ot_clazz(**object_tokenizer)
            if 'dinov2' in object_tokenizer["pretrained_model_name_or_path"]:
                ot_hidden_size = self.ot_config.hidden_size
                self.vfm_name = 'DINOv2'
            elif 'RADIO' in object_tokenizer["pretrained_model_name_or_path"]:
                ot_hidden_size = self.object_tokenizer.model.num_features
                self.vfm_name = 'RADIO'
            elif 'convnext' in object_tokenizer["pretrained_model_name_or_path"]:
                ot_hidden_size = self.ot_config.hidden_sizes[-1]
                self.vfm_name = "ConvNext"
            else:
                raise NotImplementedError
            
            self.ot_mlp1 = nn.Sequential(
                nn.LayerNorm(ot_hidden_size,),
                nn.Linear(ot_hidden_size, config.llm_config.hidden_size,),
                nn.GELU(),
                nn.Linear(config.llm_config.hidden_size, config.llm_config.hidden_size)
            )
        else:
            self.object_tokenizer = None
            self.ot_mlp1 = None
            self.ot_config = None
            
        if tokenizer is not None:
            self.tokenizer = self._build_from_cfg_or_module(tokenizer)
        else:
            self.tokenizer = AutoTokenizer.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
        img_context_token_id = self.tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
        self.model.img_context_token_id = img_context_token_id
        self._add_special_tokens()

        if self.freeze_llm:
            self.model.language_model.requires_grad_(False)
        if self.freeze_visual_encoder:
            self.model.vision_model.requires_grad_(False)
        if self.freeze_connector:
            self.model.mlp1.requires_grad_(False)
        if self.object_tokenizer is not None:
            self.object_tokenizer.requires_grad_(False)
        if self.freeze_ot_mlp and self.ot_mlp1 is not None:
            self.ot_mlp1.requires_grad_(False)

        if use_activation_checkpointing:
            # it is necessary when using gradient checkpointing
            if hasattr(self.model.language_model, 'enable_input_require_grads'):
                    self.model.language_model.enable_input_require_grads()
            else:
                self.model.language_model.get_input_embeddings(
                ).register_forward_hook(make_inputs_require_grad)
        
        self.gradient_checkpointing_enable()
        
        if self.use_llm_lora:
            self._prepare_llm_for_lora(llm_lora)
        # put this after llm_lora
        if self.unfreeze_vocab:
            self.model.language_model.get_input_embeddings().requires_grad_(True)
        if self.unfreeze_lm_head:
            self.model.language_model.get_output_embeddings().requires_grad_(True)
        if self.use_visual_encoder_lora:
            self._prepare_visual_encoder_for_lora(visual_encoder_lora)
        
        if pretrained_pth is not None:
            pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
            # for k, v in pretrained_state_dict.items():
            #     if 'radio_model.summary_idxs' in k:
            #         self.object_tokenizer.radio_model.summary_idxs = v
            #     if 'radio_model.input_conditioner.norm_mean' in k:
            #         self.object_tokenizer.radio_model.input_conditioner.norm_mean = v
            #     if 'radio_model.input_conditioner.norm_std' in k:
            #         self.object_tokenizer.radio_model.input_conditioner.norm_std = v

            mllm_state_dict = {}
            for k, v in pretrained_state_dict.items():
                if k.startswith('model.'):
                    mllm_state_dict[k[len('model.'):]] = v
            if len(mllm_state_dict) != 0:
                self.model.load_state_dict(mllm_state_dict, strict=False)
            
            if use_object_tokens:
                ot_adapter_state_dict = {}
                if radio_pretrained_pth is not None:
                    pretrained_state_dict = torch.load(radio_pretrained_pth, map_location='cpu')
                    if 'state_dict' in pretrained_state_dict:
                        pretrained_state_dict = pretrained_state_dict['state_dict']
                for k, v in pretrained_state_dict.items():
                    if k.startswith('ot_mlp1.'):
                        ot_adapter_state_dict[k[len('ot_mlp1.'):]] = v
                if len(ot_adapter_state_dict) != 0:
                    self.ot_mlp1.load_state_dict(ot_adapter_state_dict, strict=False)
         
                for k, v in self.ot_mlp1.named_parameters():
                    assert v.equal(ot_adapter_state_dict[k])
            
            # pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
            # self.load_state_dict(pretrained_state_dict, strict=False)  # TODO, check whether the internvl2 weights are loaded correctly.
            print(f"Load pretrained weight from {pretrained_pth}")
            if radio_pretrained_pth is not None:
                print(f"Load pretrained weight from {radio_pretrained_pth}")
        
        self.patch_token = int(
            (config.force_image_size // config.vision_config.patch_size)**2 * (config.downsample_ratio**2))

        self._count = 0
        print_log(self, logger="current")
        print_log('InternVL_V1_5 construction is complete', logger='current')

    def _merge_lora(self):
        # print('pre merge lora: ', self.mllm.model.language_model.base_model.model.get_input_embeddings().weight.shape)
        try:
            self.model.language_model = self.model.language_model.merge_and_unload()
        except:
            print("Skip language model, no LoRA in it !!!")
        try:
            self.model.vision_model = self.model.vision_model.merge_and_unload()
        except:
            print("Skip vision encoder, no LoRA in it !!!")
        # print('after merge lora: ', self.mllm.model.language_model.get_input_embeddings().weight.shape)
        return

    
    def _add_special_tokens(self):
        assert hasattr(self, "tokenizer")

        special_tokens = [VPT_CONTEXT_TOKEN, ]
        num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)
        print_log(f"Added {num_new_tokens} special tokens.")
        
        self.vpt_content_token_idx = self.tokenizer(VPT_CONTEXT_TOKEN, add_special_tokens=False).input_ids[0]

    def _build_from_cfg_or_module(self, cfg_or_mod):
        if isinstance(cfg_or_mod, nn.Module):
            return cfg_or_mod
        elif isinstance(cfg_or_mod, dict):
            traverse_dict(cfg_or_mod)
            return BUILDER.build(cfg_or_mod)
        else:
            raise NotImplementedError

    def _parse_lora_config(self, lora_config):
        if isinstance(lora_config, dict) or isinstance(
            lora_config, Config) or isinstance(lora_config, ConfigDict):
            lora_config = BUILDER.build(lora_config)
        return lora_config

    def _prepare_llm_for_lora(self, lora_config, use_activation_checkpointing=True):
        lora_config = self._parse_lora_config(lora_config)
        if self.config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
            target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
        elif self.config.llm_config.architectures[0] == 'Phi3ForCausalLM':
            target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
        elif self.config.llm_config.architectures[0] in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
            target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
                              'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
        else:
            raise NotImplementedError
        lora_config.target_modules = target_modules
        self.model.language_model = get_peft_model(self.model.language_model, lora_config)

    def _prepare_visual_encoder_for_lora(self, lora_config):
        lora_config = self._parse_lora_config(lora_config)
        if lora_config.target_modules is None:
            modules = find_all_linear_names(self.model.vision_model)
            lora_config.target_modules = modules
        if self.interaction_indexes is not None:
            modules = []
            for block in self.interaction_indexes:
                for layer_id in range(block[0], block[1]+1):
                    modules.extend([f'{layer_id}.{elem}' for elem in ['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2']])
            lora_config.target_modules = modules

        self.model.vision_model = get_peft_model(self.model.vision_model, lora_config)

    def gradient_checkpointing_enable(self):
        self.activation_checkpointing_enable()

    def activation_checkpointing_enable(self):
        self.model.language_model.gradient_checkpointing_enable()
    
    def gradient_checkpointing_disable(self):
        self.activation_checkpointing_disable()

    def activation_checkpointing_disable(self):
        self.model.language_model.gradient_checkpointing_disable()

    def all_state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)
        return state_dict
    
    def state_dict(self, *args, **kwargs):
        state_dict = super().state_dict(*args, **kwargs)
        to_return = OrderedDict()

        # Step 1. visual_encoder
        if self.use_visual_encoder_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.model.vision_model, state_dict=state_dict))
        elif not self.freeze_visual_encoder:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'model.vision_model.' in k
            })
        # Step 2. LLM
        if self.use_llm_lora:
            to_return.update(
                get_peft_model_state_dict(
                    self.model.language_model, state_dict=state_dict))
        elif not self.freeze_llm:
            to_return.update({
                k: v
                for k, v in state_dict.items() if 'model.language_model.'
            })
        # Step 3. Projector
        if not self.freeze_connector:
            to_return.update(
                {k: v
                for k, v in state_dict.items() if 'model.mlp1.' in k})
            o
        # Step 4. Custom part
        if not self.freeze_ot_mlp:
            to_return.update({k: v for k, v in state_dict.items() if 'ot_mlp1.' in k})  
        # for k, v in to_return.items():
        #     print(k)
        # exit(0)

        return to_return
    
    def init_weights(self):
        pass

    def forward(self, data, data_samples=None, mode='loss'):
        # for n, p in self.named_parameters():
        #     if p.requires_grad:
        #         print(n)
        # exit(0)
        pixel_values = data['pixel_values'].to(self.model.vision_model.dtype)
        merged_visual_prompts = data['merged_visual_prompts'].to(self.model.vision_model.dtype)
        num_patches = data['num_patches']
        has_ot_input = data['ot_pixel_values'] is not None
        
        vit_embeds = self.model.extract_feature(merged_visual_prompts)
        if has_ot_input and self.object_tokenizer:
            ot_pixel_values = data['ot_pixel_values'].to(self.object_tokenizer.dtype)
            ot_h, ot_w = ot_pixel_values.shape[-2:]
            if self.vfm_name == "RADIO":
                summary, ot_embeds = self.object_tokenizer(ot_pixel_values)
                ot_num_tokens_h, ot_num_tokens_w = ot_h // self.ot_config.patch_size, ot_w // self.ot_config.patch_size
            elif self.vfm_name == "DINOv2":
                ot_outputs = self.object_tokenizer(pixel_values=ot_pixel_values)
                ot_embeds = ot_outputs.last_hidden_state[:, 1:, :]
                ot_num_tokens_h, ot_num_tokens_w = ot_h // self.ot_config.patch_size, ot_w // self.ot_config.patch_size
            elif self.vfm_name == "ConvNext":
                ot_outputs = self.object_tokenizer.convnextv2(pixel_values=ot_pixel_values, 
                                                              output_hidden_states=True, 
                                                              return_dict=True)
                ot_embeds = ot_outputs.last_hidden_state  # N, C, H, W
                ot_num_tokens_h, ot_num_tokens_w = ot_embeds.shape[-2:]
                ot_embeds = ot_embeds.flatten(2, 3).transpose(1, 2)
            with torch.amp.autocast(device_type='cuda', dtype=self.model.vision_model.dtype):
                ot_embeds = self.ot_mlp1(ot_embeds)

        
        if self.object_tokenizer_pretrain:
            region_ids = data['region_ids']

            # internvit object tokenization
            num_images = data['num_images']
            batch_size = len(num_images)
            num_vprompts = data['num_vprompts']
            num_patches = data['num_patches']
            visual_prompts = data['visual_prompts']
            split_num_vprompts = torch.split(num_vprompts, [nimg for nimg in num_images])
            split_num_patches = torch.split(num_patches, [nimg for nimg in num_images])
            vprompt_split_size = [n_vp*n_p for n_vp , n_p in zip(num_vprompts, num_patches)]
            split_visual_prompts = torch.split(visual_prompts, vprompt_split_size)
            split_vit_embeds = torch.split(vit_embeds, [np for np in num_patches])
            
            object_embeds_in_batch = []
            valid_flag_in_batch = []
            start_idx = 0
            for bidx in range(batch_size):
                num_vprompt = split_num_vprompts[bidx]
                num_patch = split_num_patches[bidx]
                visual_prompts_bi = split_visual_prompts[start_idx:start_idx+num_images[bidx]]
                split_vit_embeds_bi = split_vit_embeds[start_idx:start_idx+num_images[bidx]]
                start_idx = start_idx + num_images[bidx]
                
                object_embed_list, valid_flag_list = [], []
                for fidx, visual_prompts_fi in enumerate(visual_prompts_bi):
                    h, w = visual_prompts_fi.shape[-2:]
                    visual_prompts_fi = visual_prompts_fi.reshape(num_vprompt[fidx], num_patch[fidx], h, w)
                    patch_token_edge = int(self.patch_token ** 0.5)
                    visual_prompts_fi = F.interpolate(visual_prompts_fi.to(vit_embeds.dtype), patch_token_edge, mode='bilinear')
                    visual_prompts_fi = (visual_prompts_fi > 0.55).to(vit_embeds.dtype)
                    visual_prompts_fi = visual_prompts_fi.reshape(num_vprompt[fidx], -1)

                    num_vp_tokens = torch.sum(visual_prompts_fi, dim=-1, keepdim=False)
                    valid_flag = num_vp_tokens > 0
                    
                    vit_embeds_fi = split_vit_embeds_bi[fidx].flatten(0, 1)
                    object_embeds = (visual_prompts_fi[:, :, None] / (num_vp_tokens[:, None, None] + 1e-4) * vit_embeds_fi[None, :, :])
                    object_embeds = torch.sum(object_embeds, dim=1)

                    object_embed_list.append(object_embeds)
                    valid_flag_list.append(valid_flag)
                
                object_embeds_in_batch.append(object_embed_list)
                valid_flag_in_batch.append(valid_flag_list)
            
            # object tokenizer
            ot_visual_prompts = data['ot_visual_prompts']
            split_ot_visual_prompts = torch.split(ot_visual_prompts, [nvp for nvp in num_vprompts])
            
            ot_object_embeds_in_batch = []
            ot_valid_flag_in_batch = []
            start_idx = 0
            for bidx in range(batch_size):
                num_vprompt = split_num_vprompts[bidx]
                ot_visual_prompts_bi = split_ot_visual_prompts[start_idx:start_idx+num_images[bidx]]
                ot_embeds_bi = ot_embeds[start_idx:start_idx+num_images[bidx]]  # bs, s, c
                start_idx = start_idx + num_images[bidx]

                object_embed_list, valid_flag_list = [], []
                for fidx, ot_visual_prompts_fi in enumerate(ot_visual_prompts_bi):
                    h, w = ot_visual_prompts_fi.shape[-2:]
                    # ot_visual_prompts_fi = ot_visual_prompts_fi.reshape(num_vprompt[fidx], 1, h, w)
                    ot_visual_prompts_fi = ot_visual_prompts_fi[:, None, :, :]
                    ot_visual_prompts_fi = F.interpolate(ot_visual_prompts_fi.to(ot_embeds.dtype), (ot_num_tokens_h, ot_num_tokens_w), mode="bilinear")
                    ot_visual_prompts_fi = (ot_visual_prompts_fi > 0.55).to(ot_embeds.dtype)
                    ot_visual_prompts_fi = ot_visual_prompts_fi.reshape(num_vprompt[fidx], -1)

                    num_vp_tokens = torch.sum(ot_visual_prompts_fi, dim=-1, keepdim=False)
                    valid_flag = num_vp_tokens > 0

                    ot_embeds_fi = ot_embeds_bi[fidx]
                    object_embeds = (ot_visual_prompts_fi[:, :, None] / (num_vp_tokens[:, None, None] + 1e-4) * ot_embeds_fi[None, :, :])
                    object_embeds = torch.sum(object_embeds, dim=1)

                    object_embed_list.append(object_embeds)
                    valid_flag_list.append(valid_flag)
                ot_object_embeds_in_batch.append(object_embed_list)
                ot_valid_flag_in_batch.append(valid_flag_list)
            
            # contrastive loss
            contras_loss = torch.zeros(size=(1, ), dtype=torch.float32).cuda()
            # contras_loss += ot_embeds.sum() * 0.0
            # return {"loss": contras_loss}
            valid_contras_sample = 0
            for bidx in range(batch_size):
                region_ids_bi = region_ids[bidx]
                object_embeds_bi = object_embeds_in_batch[bidx]
                ot_object_embeds_bi = ot_object_embeds_in_batch[bidx]
                valid_flags_bi = valid_flag_in_batch[bidx]
                ot_valid_flags_bi = ot_valid_flag_in_batch[bidx]
                
                for ot_object_embeds, object_embeds, ot_region_ids, _region_ids, ot_valid_flags, valid_flags in zip(
                    ot_object_embeds_bi, object_embeds_bi[::-1],
                    region_ids_bi, region_ids_bi[::-1],
                    ot_valid_flags_bi, valid_flags_bi[::-1],
                ):
                    region_id_to_indices = {region_id: idx for idx, region_id in enumerate(_region_ids)}
                    for anchor_embed, valid_flag, region_id in zip(ot_object_embeds, ot_valid_flags, ot_region_ids):
                        if not valid_flag:
                            continue
                        anchor_embed = anchor_embed.unsqueeze(0)  # 1, C
                        pos_idx = region_id_to_indices[region_id]
                        if not valid_flags[pos_idx]:
                            continue
                        pos_embed = object_embeds[pos_idx].unsqueeze(0)  # 1, C
                        if pos_idx == 0:
                            neg_embeds = object_embeds[1:, :][valid_flags[1:]] # N, C
                        elif pos_idx == (len(object_embeds) - 1):
                            neg_embeds = object_embeds[:-1, :][valid_flags[:-1]] # N, C
                        else:
                            neg_embeds = torch.cat([
                                object_embeds[:pos_idx, :][valid_flags[:pos_idx]],
                                object_embeds[pos_idx+1:, :][valid_flags[pos_idx+1:]]
                            ], dim=0) # N, C
                        
                        pos_neg_embeds = torch.cat([pos_embed, neg_embeds], dim=0)
                        pos_neg_label = pos_neg_embeds.new_zeros((pos_neg_embeds.shape[0], ), dtype=torch.int64)
                        pos_neg_label[:1] = 1

                        # dot product
                        dot_product = torch.einsum('ac,kc->ak', [anchor_embed, pos_neg_embeds])
                        pos_neg_label = pos_neg_label.unsqueeze(0)
                        pos_inds = (pos_neg_label == 1)
                        neg_inds = (pos_neg_label == 0)
                        pred_pos = dot_product * pos_inds.float()
                        pred_neg = dot_product * neg_inds.float()
                        # use -inf to mask out unwanted elements
                        pred_pos[neg_inds] = pred_pos[neg_inds] + float('inf')
                        pred_neg[pos_inds] = pred_neg[pos_inds] + float('-inf')

                        _pos_expand = torch.repeat_interleave(pred_pos, dot_product.shape[1], dim=1)
                        _neg_expand = pred_neg.repeat(1, dot_product.shape[1])
                        x = F.pad((_neg_expand - _pos_expand), (0, 1), "constant", 0)
                        try:
                            contras_loss += torch.logsumexp(x, dim=1)
                            valid_contras_sample += 1
                        except Exception as e:
                            print("x: ", x.shape)
                            print("sumexp: ", torch.logsumexp(x, dim=1).shape)
                            exit(0)
            if valid_contras_sample == 0 or torch.any(torch.isnan(contras_loss)):
                loss_dict = {"loss": ot_embeds.sum() * 0.0}
            else:
                loss_dict = {"loss": contras_loss / valid_contras_sample}
            return loss_dict
        
        # ##### Abaltion #########

        # ot_object_embeds = None
        # vprompt_flags = data['vprompt_flags']
        # ot_object_embeds_in_batch = []
        # skip_this_batch = False

        # num_vprompts = data['num_vprompts']
        # num_images = data['num_images']
        # batch_size = len(num_images)
        # num_patches = data['num_patches']
        # visual_prompts = data['visual_prompts']
        # try:
        #     split_num_vprompts = torch.split(num_vprompts, [nimg for nimg in num_images])
        #     split_num_patches = torch.split(num_patches, [nimg for nimg in num_images])
        #     vprompt_split_size = [n_vp*n_p for n_vp , n_p in zip(num_vprompts, num_patches)]
        #     split_visual_prompts = torch.split(visual_prompts, vprompt_split_size)
        #     split_vit_embeds = torch.split(vit_embeds, [np for np in num_patches])

        #     start_idx = 0
        #     for bidx in range(batch_size):
        #         num_vprompt = split_num_vprompts[bidx]
        #         num_patch = split_num_patches[bidx]
        #         visual_prompts_bi = split_visual_prompts[start_idx:start_idx+num_images[bidx]]
        #         split_vit_embeds_bi = split_vit_embeds[start_idx:start_idx+num_images[bidx]]
        #         start_idx = start_idx + num_images[bidx]
                
        #         object_embed_list = []
        #         for fidx, visual_prompts_fi in enumerate(visual_prompts_bi):
        #             h, w = visual_prompts_fi.shape[-2:]
        #             visual_prompts_fi = visual_prompts_fi.reshape(num_vprompt[fidx], num_patch[fidx], h, w)
        #             patch_token_edge = int(self.patch_token ** 0.5)
        #             visual_prompts_fi = F.interpolate(visual_prompts_fi.to(vit_embeds.dtype), patch_token_edge, mode='bilinear')
        #             visual_prompts_fi = (visual_prompts_fi > 0.55).to(vit_embeds.dtype)
        #             visual_prompts_fi = visual_prompts_fi.reshape(num_vprompt[fidx], -1)

        #             num_vp_tokens = torch.sum(visual_prompts_fi, dim=-1, keepdim=False)
                    
        #             vit_embeds_fi = split_vit_embeds_bi[fidx].flatten(0, 1)
        #             object_embeds = (visual_prompts_fi[:, :, None] / (num_vp_tokens[:, None, None] + 1e-4) * vit_embeds_fi[None, :, :])
        #             object_embeds = torch.sum(object_embeds, dim=1)

        #             object_embed_list.append(object_embeds)
                
        #         ot_object_embeds_in_batch.append(object_embed_list)
        #     ot_object_embeds = []
        #     for ele in ot_object_embeds_in_batch:
        #         ot_object_embeds.extend(ele)
        #     ot_object_embeds = torch.cat(ot_object_embeds, dim=0)
        # except:
        #     skip_this_batch = True


        
        ot_object_embeds = None
        vprompt_flags = data['vprompt_flags']
        ot_object_embeds_in_batch = []
        skip_this_batch = False
        if has_ot_input and self.object_tokenizer:
            # object tokenizer
            num_vprompts = data['num_vprompts']
            num_images = data['num_images']
            batch_size = len(num_images)
            ot_visual_prompts = data['ot_visual_prompts']
            
            try:
                split_ot_visual_prompts = torch.split(ot_visual_prompts, [nvp for nvp in num_vprompts])
            except:
                nvp_list = [1 for nvp in num_vprompts]
                if ot_visual_prompts.shape[0] >= len(nvp_list):
                    split_ot_visual_prompts = torch.split(ot_visual_prompts[:len(nvp_list)], nvp_list)
                else:
                    split_ot_visual_prompts = torch.stack([ot_visual_prompts[0] for nvp in nvp_list])
                num_vprompts = torch.tensor(nvp_list).to(num_vprompts.dtype).to(num_vprompts.device)
                skip_this_batch = True
            split_num_vprompts = torch.split(num_vprompts, [nimg for nimg in num_images]) 

            start_idx = 0
            for bidx in range(batch_size):
                num_vprompt = split_num_vprompts[bidx]
                ot_visual_prompts_bi = split_ot_visual_prompts[start_idx:start_idx+num_images[bidx]]
                ot_embeds_bi = ot_embeds[start_idx:start_idx+num_images[bidx]]  # bs, s, c
                start_idx = start_idx + num_images[bidx]
                
                ot_object_embeds_list = []
                for fidx, ot_visual_prompts_fi in enumerate(ot_visual_prompts_bi):
                    h, w = ot_visual_prompts_fi.shape[-2:]
                    ot_visual_prompts_fi = ot_visual_prompts_fi.reshape(num_vprompt[fidx], 1, h, w)
                    # ot_visual_prompts_fi = ot_visual_prompts_fi[:, None, :, :]
                    ot_visual_prompts_fi = F.interpolate(ot_visual_prompts_fi.to(ot_embeds.dtype), (ot_num_tokens_h, ot_num_tokens_w), mode="bilinear")
                    ot_visual_prompts_fi = (ot_visual_prompts_fi > 0.5).to(ot_embeds.dtype)
                    ot_visual_prompts_fi = ot_visual_prompts_fi.reshape(num_vprompt[fidx], -1)

                    num_vp_tokens = torch.sum(ot_visual_prompts_fi, dim=-1, keepdim=False)
                    ot_embeds_fi = ot_embeds_bi[fidx]
                    object_embeds = (ot_visual_prompts_fi[:, :, None] / (num_vp_tokens[:, None, None] + 1e-4) * ot_embeds_fi[None, :, :])
                    object_embeds = torch.sum(object_embeds, dim=1)
                    ot_object_embeds_list.append(object_embeds)
                ot_object_embeds_in_batch.append(ot_object_embeds_list)
            ot_object_embeds = []
            for ele in ot_object_embeds_in_batch:
                ot_object_embeds.extend(ele)
            ot_object_embeds = torch.cat(ot_object_embeds, dim=0)

        if mode == "loss":
            input_ids = data['input_ids']
            position_ids = data['position_ids']
            attention_mask = data['attention_mask']
            image_flags = data['image_flags']

            labels = data['labels']
            use_cache = False

            outputs, _skip_this_case = self._llm_forward(
                input_ids=input_ids,
                position_ids=position_ids,
                attention_mask=attention_mask,
                image_flags=image_flags,
                labels=labels,
                use_cache=use_cache,
                vit_embeds=vit_embeds,
                ot_object_embeds=ot_object_embeds,
                vprompt_flags=vprompt_flags,
            )
            
            if skip_this_batch or _skip_this_case:
                print("skip this batch!")
                loss_dict = {'loss': outputs.loss * 0.0}
            else:
                loss_dict = {'loss': outputs.loss}
            if not self.contras_loss:
                return loss_dict
            
            # num_images = data['num_images']
            # batch_size = len(num_images)

            # region_ids = data['region_ids']
            # contras_loss = loss_dict['loss'].new_zeros((1,))
            # valid_contras_sample = 0
            # for bidx in range(batch_size):
            #     if num_images[bidx] < 2 or skip_this_batch:
            #         contras_loss += ot_embeds.sum() * 0.0
            #     else:
            #         assert num_images[bidx] == 2
            #         region_id_to_indices = {region_id: idx for idx, region_id in enumerate(region_ids[bidx][-1])}
            #         anchor_region_id = region_ids[bidx][0][0]

            #         if anchor_region_id == -1:
            #             contras_loss += ot_embeds.sum() * 0.0
            #             continue

            #         anchor_embeds = ot_object_embeds_in_batch[bidx][0].mean(dim=0, keepdim=True)  # 1, C
            #         pos_idx = region_id_to_indices[anchor_region_id]
            #         try:
            #             pos_embeds = ot_object_embeds_in_batch[bidx][-1][pos_idx].unsqueeze(0)
            #         except:
            #             contras_loss += ot_embeds.sum() * 0.0
            #             continue
            #         try:
            #             if pos_idx == 0:
            #                 neg_embeds = ot_object_embeds_in_batch[bidx][-1][1:, :] # N, C
            #             elif pos_idx == (len(ot_object_embeds_in_batch[bidx][-1]) - 1):
            #                 neg_embeds = ot_object_embeds_in_batch[bidx][-1][:-1, :] # N, C
            #             else:
            #                 neg_embeds = torch.cat([
            #                     ot_object_embeds_in_batch[bidx][-1][:pos_idx, :],
            #                     ot_object_embeds_in_batch[bidx][-1][pos_idx+1:, :]
            #                 ], dim=0) # N, C
            #         except:
            #             contras_loss += ot_embeds.sum() * 0.0
            #             continue
                    
            #         pos_neg_embeds = torch.cat([pos_embeds, neg_embeds], dim=0)
            #         pos_neg_label = pos_neg_embeds.new_zeros((pos_neg_embeds.shape[0], ), dtype=torch.int64)
            #         pos_neg_label[:1] = 1

            #         # dot product
            #         dot_product = torch.einsum('ac,kc->ak', [anchor_embeds, pos_neg_embeds])
            #         pos_neg_label = pos_neg_label.unsqueeze(0)
            #         pos_inds = (pos_neg_label == 1)
            #         neg_inds = (pos_neg_label == 0)
            #         pred_pos = dot_product * pos_inds.float()
            #         pred_neg = dot_product * neg_inds.float()
            #         # use -inf to mask out unwanted elements
            #         pred_pos[neg_inds] = pred_pos[neg_inds] + float('inf')
            #         pred_neg[pos_inds] = pred_neg[pos_inds] + float('-inf')

            #         _pos_expand = torch.repeat_interleave(pred_pos, dot_product.shape[1], dim=1)
            #         _neg_expand = pred_neg.repeat(1, dot_product.shape[1])
            #         x = F.pad((_neg_expand - _pos_expand), (0, 1), "constant", 0)
            #         try:
            #             contras_loss += torch.logsumexp(x, dim=1)
            #             valid_contras_sample += 1
            #         except Exception as e:
            #             print("x: ", x.shape)
            #             print("sumexp: ", torch.logsumexp(x, dim=1).shape)
            #             exit(0)

            # num_images = data['num_images']
            # batch_size = len(num_images)
            # num_vprompts = data['num_vprompts']
            # num_patches = data['num_patches']
            # visual_prompts = data['visual_prompts']
            # split_num_vprompts = torch.split(num_vprompts, num_images)
            # split_num_patches = torch.split(num_patches, num_images)
            # vprompt_split_size = [n_vp*n_p for n_vp , n_p in zip(num_vprompts, num_patches)]
            # split_visual_prompts = torch.split(visual_prompts, vprompt_split_size)

            # contras_loss = loss_dict['loss'].new_zeros((1,))
            # valid_contras_sample = 0
            # for bidx in range(batch_size):
            #     num_vprompt = split_num_vprompts[bidx]
            #     num_patch = split_num_patches[bidx]
            #     visual_prompts = split_visual_prompts[:num_images[bidx]]
            #     split_vit_embeds = torch.split(vit_embeds, [np for np in num_patch])

            #     if num_images[bidx] < 2:
            #         visual_prompts = visual_prompts[0]
            #         h, w = visual_prompts.shape[-2:]
            #         visual_prompts = visual_prompts.reshape(num_vprompt[0], num_patch[0], h, w)
            #         contras_loss += vit_embeds.sum() * 0.0
            #     else:
            #         assert num_images[bidx] == 2
            #         visual_prompts_1 = visual_prompts[0]
            #         visual_prompts_2 = visual_prompts[1]
            #         h, w = visual_prompts_1.shape[-2:]
            #         visual_prompts_1 = visual_prompts_1.reshape(num_vprompt[0], num_patch[0], h, w)
            #         visual_prompts_2 = visual_prompts_2.reshape(num_vprompt[1], num_patch[1], h, w)

            #         patch_token_edge = int(self.patch_token ** 0.5)
            #         visual_prompts_1 = F.interpolate(visual_prompts_1.to(vit_embeds.dtype), patch_token_edge, mode='bilinear')
            #         visual_prompts_2 = F.interpolate(visual_prompts_2.to(vit_embeds.dtype), patch_token_edge, mode='bilinear')
            #         visual_prompts_1 = (visual_prompts_1 > 0.6).to(vit_embeds.dtype)
            #         visual_prompts_2 = (visual_prompts_2 > 0.6).to(vit_embeds.dtype)
            #         visual_prompts_1 = visual_prompts_1.reshape(num_vprompt[0], -1)
            #         visual_prompts_2 = visual_prompts_2.reshape(num_vprompt[1], -1)

            #         vit_embeds_1 = split_vit_embeds[0].flatten(0, 1)
            #         vit_embeds_2 = split_vit_embeds[1].flatten(0, 1)
                    
            #         anchor_num_tokens = torch.sum(visual_prompts_1, dim=1)
            #         if anchor_num_tokens.sum() < 1:
            #             contras_loss += vit_embeds.sum() * 0.0
            #         anchor_embeds = (visual_prompts_1[:, :, None] / anchor_num_tokens[:, None, None] * vit_embeds_1[None, :, :])
            #         anchor_embeds = torch.sum(anchor_embeds, dim=1).mean(dim=0, keepdim=True)  # 1, C

            #         pos_num_tokens = torch.sum(visual_prompts_2[:1], dim=1)
            #         if pos_num_tokens.sum() < 1:
            #             contras_loss += vit_embeds.sum() * 0.0
            #         pos_embeds = (visual_prompts_2[:1, :, None] / pos_num_tokens[:, None, None] * vit_embeds_2[None, :, :])
            #         pos_embeds = torch.sum(pos_embeds, dim=1).mean(dim=0, keepdim=True)  # 1, C

            #         neg_num_tokens = torch.sum(visual_prompts_2[1:], dim=1)
            #         valid_neg_sample = neg_num_tokens > 0
            #         if len(neg_num_tokens[valid_neg_sample]) < 4:
            #             contras_loss += vit_embeds.sum() * 0.0
            #         visual_prompts_2 = visual_prompts_2[1:, :][valid_neg_sample]
            #         neg_num_tokens = neg_num_tokens[valid_neg_sample]
            #         neg_embeds = (visual_prompts_2[:, :, None] / neg_num_tokens[:, None, None] * vit_embeds_2[None, :, :])
            #         neg_embeds =torch.sum(neg_embeds, dim=1)  # N, C

            #         pos_neg_embeds = torch.cat([pos_embeds, neg_embeds], dim=0)
            #         pos_neg_label = pos_neg_embeds.new_zeros((pos_neg_embeds.shape[0], ), dtype=torch.int64)
            #         pos_neg_label[:1] = 1

            #         # dot product
            #         dot_product = torch.einsum('ac,kc->ak', [anchor_embeds, pos_neg_embeds])
            #         pos_neg_label = pos_neg_label.unsqueeze(0)
            #         pos_inds = (pos_neg_label == 1)
            #         neg_inds = (pos_neg_label == 0)
            #         pred_pos = dot_product * pos_inds.float()
            #         pred_neg = dot_product * neg_inds.float()
            #         # use -inf to mask out unwanted elements
            #         pred_pos[neg_inds] = pred_pos[neg_inds] + float('inf')
            #         pred_neg[pos_inds] = pred_neg[pos_inds] + float('-inf')

            #         _pos_expand = torch.repeat_interleave(pred_pos, dot_product.shape[1], dim=1)
            #         _neg_expand = pred_neg.repeat(1, dot_product.shape[1])
            #         x = F.pad((_neg_expand - _pos_expand), (0, 1), "constant", 0)
            #         try:
            #             contras_loss += torch.logsumexp(x, dim=1)
            #             valid_contras_sample += 1
            #         except Exception as e:
            #             print("x: ", x.shape)
            #             print("sumexp: ", torch.logsumexp(x, dim=1).shape)
            #             exit(0)

            # if valid_contras_sample == 0 or torch.any(torch.isnan(contras_loss)) or skip_this_batch:
            #     loss_dict.update({"contras_loss": ot_embeds.sum() * 0.0})
            # else:
            #     loss_dict.update({"contras_loss": contras_loss / valid_contras_sample})
            # return loss_dict
        elif mode == "predict":
            pass
        elif mode == "tensor":
            pass
        else:
            raise NotImplementedError

    def _llm_forward(
        self,
        vit_embeds: torch.FloatTensor,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        image_flags: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        ot_object_embeds: torch.FloatTensor = None,
        vprompt_flags: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None \
            else self.model.config.use_return_dict
        
        B, N = input_ids.shape
        temp_input_ids = input_ids.clone().flatten()
        temp_input_ids[temp_input_ids == self.vpt_content_token_idx] = self.model.img_context_token_id
        input_embeds = self.model.language_model.get_input_embeddings()(temp_input_ids.reshape(B, N)).clone()

        # input_embeds = self.model.language_model.get_input_embeddings()(input_ids).clone()

        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = vit_embeds.shape[0]
        
        B, N, C  = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)
        input_ids = input_ids.reshape(B * N)
        
        skip_this_case=False
        if ot_object_embeds is not None:    
            try:
                ot_object_embeds = ot_object_embeds[vprompt_flags > 0]
                selected = (input_ids == self.vpt_content_token_idx)
                input_embeds[selected] = input_embeds[selected] * 0.0 + ot_object_embeds
                skip_this_case=False
            except:
                print(f"The number of the provided object embeds is not match with vprompt_flags or VPT_CONTENT_TOKEN.")
                selected = (input_ids == self.vpt_content_token_idx)
                input_embeds[selected] = input_embeds[selected] * 0.0 + ot_object_embeds.mean(dim=0, keepdim=True).to(input_embeds.dtype)
                skip_this_case=True
    
        selected = (input_ids == self.model.img_context_token_id)
        try:
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f"warning: {e}, input_embeds[selected].shape="
                  f"{input_embeds[selected].shape}, "
                  f"vit_embeds.shape={vit_embeds.shape}")
            n_token = selected.sum()
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
        input_embeds = input_embeds.reshape(B, N, C)

        if torch.distributed.get_rank() == 0 and self._count % 100 == 0:
            print(f"dynamic ViT batch size: {vit_batch_size}, "
                  f"images per sample: {vit_batch_size}/B, "
                  f"dynamic token length: {N}")
        self._count += 1

        outputs = self.model.language_model(
            inputs_embeds = input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shit so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.model.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
        
        if not return_dict:
            output = (logits, ) + outputs[1:]
            return (loss, ) + output if loss is not None else output
        
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        ), skip_this_case
    
    def batch_chat(self, pixel_values, questions, merged_visual_prompts, 
                   generation_config, num_patches_list=None, history=None, return_history=False,
                   ):
        if history is not None or return_history:
            print('Now multi-turn chat is not supported in batch_chat.')
            raise NotImplementedError
        
        # tokenize and embed the text prompts
        queries = []
        for idx, num_patches in enumerate(num_patches_list):
            question = questions[idx]
            if pixel_values is not None and DEFAULT_IMAGE_TOKEN not in question:
                question = DEFAULT_IMAGE_TOKEN + '\n' + question
            template = get_conv_template(self.config.template)
            template.append_message(template.roles[0], question)
            template.append_message(template.roles[1], None)
            query = template.get_prompt()
            
            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.patch_token * num_patches + IMG_END_TOKEN
            query = query.replace(DEFAULT_IMAGE_TOKEN, image_tokens, 1)
            queries.append(query)

        self.tokenizer.padding_side = 'left'  # Important, When training the model, this attribute is setted to 'right'
        model_inputs = self.tokenizer(queries, return_tensors='pt', padding=True)
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()
        eos_token_id = self.tokenizer.convert_tokens_to_ids(template.sep)
        generation_config['eos_token_id'] = eos_token_id
        
        input_embeds = self.model.language_model.get_input_embeddings()(input_ids).clone()
        
        vit_embeds = self.model.extract_feature(merged_visual_prompts)
        
        B, N, C  = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)
        input_ids = input_ids.reshape(B * N)
        
        selected = (input_ids == self.model.img_context_token_id)
        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
        input_embeds = input_embeds.reshape(B, N, C)

        # 4. generate
        generate_output = self.generate(
            input_embeds=input_embeds,
            attention_mask=attention_mask,
            **generation_config
        )

        responses = self.tokenizer.batch_decode(generate_output, skip_special_tokens=True)
        responses = [response.split(template.sep)[0].strip() for response in responses]

        return responses
    
    @torch.no_grad()
    def generate(
        self,
        input_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **generate_kwargs,
    ) -> torch.LongTensor:
        outputs = self.model.language_model.generate(
            inputs_embeds = input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs