File size: 35,014 Bytes
032e687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
import copy
import io
import json
import os
import random
import warnings
import logging
from typing import Any
from copy import deepcopy
from distinctipy import distinctipy
import numpy as np
from PIL import Image, ImageDraw
import cv2
import torch
from torch.utils.data import Dataset
import torchvision.transforms as T
import torch.nn.functional as F
from torchvision.transforms.functional import InterpolationMode
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from transformers import AutoConfig, AutoTokenizer
from pycocotools import mask
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from .process_functions import (dynamic_preprocess, preprocess_internlm,
preprocess_mpt, preprocess_phi3, preprocess,
vcr_decode_mask_fn, preprocess_phi3_debug)
from .utils import (expand2square, expand2square_mask, DEFAULT_VISION_PROMPT_TOKEN,
VPT_CONTEXT_TOKEN, VPT_START_TOKEN, VPT_END_TOKEN, RGB_NAME)
from .process_functions import (point_rendering, box_rendering, image_blending, contour_rendering)
class InternVLDataset(Dataset):
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
model_path,
data_path=None,
image_folder=None,
dataset_map_fn=None,
annotation_load_fn=None,
dynamic_image_size=False,
pad_image_to_square=False,
repeat_time=1,
max_length=8192,
num_dynamic_patch=None,
lazy_load=True,
group_by_length=False,
tokenizer=None,
support_prompt_types=["rectangle"],
pseudo_two_images_mode=False,
ot_image_processor=None,
vfm_name="RADIO",):
super().__init__()
self.max_length = max_length
self.dataset_map_fn = dataset_map_fn
self.annotation_load_fn = annotation_load_fn
self.lazy_load = lazy_load
self.dynamic_image_size = dynamic_image_size
self.pad_image_to_square = pad_image_to_square
self.group_by_length = group_by_length
self.support_prompt_types = support_prompt_types
self.pseudo_two_images_mode = pseudo_two_images_mode
self.ot_image_processor = ot_image_processor
self.vfm_name = vfm_name
if vfm_name in ['DINOv2', 'ConvNext']:
self.ot_image_processor.do_center_crop=False
self.ot_image_processor.do_resize=False
self.cfg = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
self.template = self.cfg.template
if num_dynamic_patch is not None and len(num_dynamic_patch) == 2:
self.min_dynamic_patch = num_dynamic_patch[0]
self.max_dynamic_patch = num_dynamic_patch[1]
else:
self.min_dynamic_patch = self.cfg.min_dynamic_patch
self.max_dynamic_patch = self.cfg.max_dynamic_patch
self.downsample_ratio = self.cfg.downsample_ratio
self.image_size = self.cfg.force_image_size
self.use_thumbnail = self.cfg.use_thumbnail
patch_size = self.cfg.vision_config.patch_size
self.patch_token = int((self.image_size // patch_size)**2 * (self.downsample_ratio**2))
if tokenizer is not None:
self.tokenizer = tokenizer
else:
self.tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True)
self._add_special_tokens()
self.transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')
if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size)),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
json_data, hf_json_data = self.annotation_load_fn(data_path, repeat_time, image_folder=image_folder)
if json_data is not None:
self.json_data = json_data
hf_json_data = DatasetDict({'train': HFDataset.from_list(hf_json_data)})
if self.lazy_load:
self.text_data = build_origin_dataset(hf_json_data, 'train')
else:
raise NotImplementedError
self.image_folder = image_folder
self._max_refetch = 1000
self.tcs_loader = None
def _add_special_tokens(self):
special_tokens = [VPT_CONTEXT_TOKEN,]
num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)
@property
def modality_length(self):
length_list = []
for data_dict in self.text_data:
if self.lazy_load:
cur_len = 100
else:
cur_len = len(data_dict['input_ids'])
if data_dict.get('image', None) is None:
cur_len = -cur_len
length_list.append(cur_len)
return length_list
def _rand_another(self):
return np.random.randint(0, len(self.text_data))
def __len__(self):
return len(self.text_data)
def __getitem__(self, index) -> Any:
for _ in range(self._max_refetch + 1):
data = self.prepare_data(index)
# Broken images may cause the returned data to be None
if data is None:
index = self._rand_another()
continue
return data
def prepare_data(self, index):
if hasattr(self, 'json_data'):
data_dict = copy.deepcopy(self.json_data[index])
data_dict.update(self.text_data[index])
else:
data_dict = copy.deepcopy(self.text_data[index])
if self.lazy_load:
result = self.dataset_map_fn(data_dict)
if result is None:
return None
data_dict.update(result)
if 'image' in data_dict and data_dict['image'] is not None and len(data_dict['image']) != 0:
if type(data_dict['image']) == list or self.pseudo_two_images_mode:
ret = self.multi_modal_multi_image_get_item(data_dict)
else:
ret = self.multi_modal_get_item(data_dict)
elif 'video' in data_dict and data_dict['video'] is not None and data_dict['video'] != '':
ret = self.video_get_item(data_dict)
else:
ret = self.pure_text_get_item(data_dict)
return ret
else:
raise NotImplementedError
def get_preprocess_function(self):
# Select the appropriate preprocessing function based on the template name
if self.template == "Hermes-2":
preprocess_function = preprocess_mpt
elif self.template == "internlm2-chat" or "internvl2_5":
preprocess_function = preprocess_internlm
self.template = "internlm2-chat"
elif self.template == "phi3-chat":
preprocess_function = preprocess_phi3_debug #preprocess_phi3
else:
preprocess_function = preprocess
return preprocess_function
def load_image(self, image_path):
# Load the image using tcs_loader if available, otherwise use PIL
if self.tcs_loader is not None and 's3://' in image_path:
return self.tcs_loader(image_path)
return Image.open(image_path).convert('RGB')
def decode_mask(self, object_masks, ori_height, ori_width):
binary_masks = []
for object_mask in object_masks:
if isinstance(object_mask, dict):
if isinstance(object_mask["counts"], list):
# convert to compressed RLE
object_mask = mask.frPyObjects(object_mask, ori_height, ori_width)
m = mask.decode(object_mask)
m = m.astype(np.uint8).squeeze()
elif object_mask:
rles = mask.frPyObjects(object_mask, ori_height, ori_width)
rle = mask.merge(rles)
m = mask.decode(rle).astype(np.uint8).squeeze()
else:
m = np.zeros((ori_height, ori_width), dtype=np.uint8)
binary_masks.append(m)
if len(binary_masks) == 0:
binary_masks.append(np.zeros((ori_height, ori_width), dtype=np.uint8))
masks = np.stack(binary_masks, axis=0)
if self.pad_image_to_square:
masks = expand2square_mask(masks)
# masks = torch.from_numpy(masks)
return masks
def multi_modal_get_item(self, data_item):
# Ensure the first conversation contains an image placeholder
if DEFAULT_IMAGE_TOKEN not in data_item['conversations'][0]['value']:
data_item['conversations'][0]['value'] = DEFAULT_IMAGE_TOKEN + '\n' + data_item['conversations'][0]['value']
# Merge the image path
image_path = os.path.join(self.image_folder, data_item['image'])
# Load the image using tcs_loader if available, otherwise use PIL
try:
image = self.load_image(image_path)
except Exception as e:
print(f'Error: {e}', flush=True)
print_log(f'Error: {e}', logger='current')
return None
if image is None:
return None
ori_width, ori_height = image.size
if ori_width < 10 or ori_height < 10:
return None
# image_name = image_path[-10:-4]
# process and get masks/points/bbox
merged_visual_prompts = cv2.imread(image_path)
if merged_visual_prompts is None:
merged_visual_prompts = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
regions = np.zeros(shape=(1, ori_height, ori_width), dtype=np.uint8)
has_visual_prompts = False
if 'annotation' in data_item and data_item['annotation'] is not None and len(data_item['annotation']) > 0:
annotations = data_item['annotation']
sampled_inds = data_item.get('sampled_inds', list(range(len(annotations))))
if self.annotation_load_fn.__name__ == 'RegionShortConversationVCRDataset_load_fn':
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds]
segms = [annotations[idx]['segmentation'] for idx in sampled_inds]
regions = vcr_decode_mask_fn(bboxes, segms, ori_height, ori_width)
regions = (regions > 0.0).astype(np.uint8)
elif self.annotation_load_fn.__name__ == 'MDPVBoxOCRDataset_load_fn':
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds]
regions = np.zeros(shape=(len(bboxes), ori_height, ori_width), dtype=np.uint8)
for bidx, bbox in enumerate(bboxes):
x0, y0, x1, y1 = bbox
regions[bidx, y0:y1, x0:x1] = 1
else:
segms = [annotations[idx]['segmentation'] for idx in sampled_inds]
regions = self.decode_mask(segms, ori_height=ori_height, ori_width=ori_width) # n, h, w
try:
contour_rendering(merged_visual_prompts, regions)
except Exception as e:
pass
has_visual_prompts = True
merged_visual_prompts = Image.fromarray(cv2.cvtColor(merged_visual_prompts, cv2.COLOR_BGR2RGB))
# image.save(f'/mnt/bn/xiangtai-training-data/project/xiangtai-windows/internvl/internvl_debug_out/ori_image_{image_name}.jpg')
# merged_visual_prompts.save(f'/mnt/bn/xiangtai-training-data/project/xiangtai-windows/internvl/internvl_debug_out/merged_vprompts_{image_name}.jpg')
# print(f"{image_name}: ", data_item['conversations'])
# exit(0)
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
try:
images, _regions, merged_regions = dynamic_preprocess(
image, regions, merged_visual_prompts, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch,
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
except AssertionError as e:
return None
elif self.pad_image_to_square:
image = expand2square(
image,
tuple(int(x * 255) for x in self.IMAGENET_MEAN))
images = [image]
merged_visual_prompts = expand2square(
merged_visual_prompts,
tuple(int(x * 255) for x in self.IMAGENET_MEAN))
merged_regions = [merged_visual_prompts]
else:
images = [image]
merged_regions = [merged_visual_prompts]
# Apply the transformation to each image and stack the results into a tensor
pixel_values = [self.transform(image) for image in images]
pixel_values = torch.stack(pixel_values) # num_patch, channels, h, w
merged_visual_prompts = [self.transform(merged_region) for merged_region in merged_regions]
merged_visual_prompts = torch.stack(merged_visual_prompts)
transformed_visual_prompts = []
for region in _regions:
transformed_regions = []
for _region in region:
resized_region = cv2.resize(
_region[:, :, np.newaxis], dsize=(self.image_size, self.image_size),
interpolation=cv2.INTER_NEAREST_EXACT)
transformed_regions.append(torch.from_numpy(resized_region).squeeze(-1))
transformed_visual_prompts.append(torch.stack(transformed_regions))
visual_prompts = torch.stack(transformed_visual_prompts) # num_prompts, num_patch, h, w
assert merged_visual_prompts.shape[:2] == pixel_values.shape[:2]
if self.vfm_name == "DINOv2":
OT_FORCE_IMAGE_SIZE = 512
elif self.vfm_name in ["RADIO", "ConvNext"]:
OT_FORCE_IMAGE_SIZE = 1024
else:
raise NotImplementedError
image = self.load_image(image_path)
w, h = image.size
if w > h:
target_size = (OT_FORCE_IMAGE_SIZE, int(h/w*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(w/h*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_image = image.resize(target_size)
cur_w, cur_h = resized_image.size
padded_image = np.zeros(shape=(OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE, 3), dtype=np.uint8) * 255
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
ot_pixel_values = self.ot_image_processor(images=padded_image, return_tensors='pt').pixel_values
ot_visual_prompts = torch.tensor(regions).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
h, w = ot_visual_prompts.shape[-2:]
if h > w:
target_size = (OT_FORCE_IMAGE_SIZE, int(w/h*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(h/w*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1)
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE))
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts
# Ensure that there is only one patch if dynamic image size is not enabled
num_patches = pixel_values.size(0)
if not self.dynamic_image_size:
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
# Selcet the appropriate preprocessing function based on the template name
preprocess_function = self.get_preprocess_function()
# Preprocess the conversations and generate the return dictionary
if has_visual_prompts:
region_ids = [[region_id+1 for region_id in range(ot_visual_prompts.shape[0])],]
object_tokens_str = ""
for fidx, object_ids_fidx in enumerate(region_ids):
object_tokens_str = object_tokens_str + f"Regions in the image: "
for object_id in object_ids_fidx:
object_tokens_str = object_tokens_str + f"<region-{object_id}>{VPT_CONTEXT_TOKEN}, "
object_tokens_str = object_tokens_str[:-1] + ".\n"
else:
object_tokens_str = ""
ret = preprocess_function(self.template, [deepcopy(data_item['conversations'])],
self.tokenizer, [self.patch_token * num_patches],
group_by_length=self.group_by_length, ds_name="XXX",
num_image=1, object_tokens_str=object_tokens_str)
# Create the final return dictionary
ret = dict(
input_ids=ret['input_ids'][0],
labels=ret['labels'][0],
attention_mask=ret['attention_mask'][0],
pixel_values=merged_visual_prompts, #pixel_values,
merged_visual_prompts=pixel_values, #merged_visual_prompts,
image_flags=torch.tensor([1] * num_patches, dtype=torch.long),
num_patches=[num_patches,],
visual_prompts=visual_prompts.flatten(0, 1),
num_vprompts=[visual_prompts.shape[0],],
vprompt_flags=[[1]*visual_prompts.shape[0], ] if has_visual_prompts else [[0]*visual_prompts.shape[0],],
num_images=1,
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=resized_padded_ot_visual_prompts,
region_ids=[[region_id+1 for region_id in range(visual_prompts.shape[0])],],
)
return ret
def multi_modal_multi_image_get_item(self, data_item):
image_name_list = data_item['image']
image_path_list = [os.path.join(self.image_folder, image_name) for image_name in image_name_list]
images = [self.load_image(image_path) for image_path in image_path_list]
if any([item is None for item in images]):
return None
merged_visual_prompts = [cv2.imread(image_path) for image_path in image_path_list]
for idx, item in enumerate(merged_visual_prompts):
if item is not None:
continue
merged_visual_prompts[idx] = cv2.cvtColor(np.asarray(image_path_list[idx]), cv2.COLOR_RGB2BGR)
# image_name = image_path_list[0][-8:-4]
gt_region_id = -1
visual_prompts_list, object_ids = [], []
if 'pos_annotations' in data_item and data_item['pos_annotations'] is not None and len(data_item['pos_annotations']) > 0:
pos_annotations = data_item['pos_annotations']
neg_annotations = data_item['neg_annotations']
name_rgb = random.choice(RGB_NAME)
color_name, color = [], []
for k, v in name_rgb.items():
color_name.append(str(k))
color.append(v)
color = color[0]
color_name = color_name[0]
color_anno_i = (color[2], color[1], color[0])
for fidx in range(len(pos_annotations)-1):
ori_width, ori_height = images[fidx].size
regions = self.decode_mask(pos_annotations[fidx], ori_height=ori_height, ori_width=ori_width)
visual_prompts_list.append(regions)
object_ids.append([])
for region in regions:
contours, hierarchy = cv2.findContours(region, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(merged_visual_prompts[fidx], contours, -1, color=color_anno_i, thickness=2)
object_ids[fidx].append(1)
ori_width, ori_height = images[-1].size
pos_neg_segms = pos_annotations[-1] + neg_annotations[-1]
regions = self.decode_mask(pos_neg_segms, ori_height=ori_height, ori_width=ori_width)
visual_prompts_list.append(regions)
random_id = list(range(1, len(regions)+1))
random.shuffle(random_id)
try:
contour_rendering(merged_visual_prompts[-1], regions, random_id)
object_ids.append([_id for _id in random_id])
choice_names = [f"{chr(i)}" for i in range(65,91)]
if len(regions) > len(choice_names) - 1:
valid_num = len(choice_names) - 1
else:
valid_num = len(regions)
region_ids = random_id[:valid_num]
choice_names = choice_names[:valid_num+1]
gt_region_id = region_ids[0] if not data_item['is_disappear'] else -1
region_ids.sort()
multi_choices_str = ""
gt_choice_str = ""
for choice_name, region_id in zip(choice_names[:-1], region_ids):
multi_choices_str = multi_choices_str + f"{choice_name}. {region_id}\n"
if region_id == gt_region_id:
assert gt_choice_str == ""
gt_choice_str = gt_choice_str + f"{choice_name}"
multi_choices_str = multi_choices_str + f"{choice_names[-1]}. None of the above choices are correct\n"
if gt_choice_str == "" or data_item['is_disappear'] or len(pos_annotations[-1]) == 0:
gt_choice_str = f"{choice_names[-1]}"
conversations = data_item['conversations']
for i, conversation in enumerate(conversations):
conversation_value = conversation['value']
conversation_value = conversation_value.format(color=color_name, choices=multi_choices_str, answer=gt_choice_str)
conversation['value'] = conversation_value
data_item['conversations'] = conversations
except Exception as e:
pass
else:
pass
merged_visual_prompts = [Image.fromarray(cv2.cvtColor(item, cv2.COLOR_BGR2RGB)) for item in merged_visual_prompts]
# for fidx in range(len(images)):
# images[fidx].save(f'/mnt/bn/zhangtao99-2/internvl/internvl_debug_out/ori_image_{image_name}_f{fidx+1}.jpg')
# merged_visual_prompts[fidx].save(f'/mnt/bn/zhangtao99-2/internvl/internvl_debug_out/merged_vprompts_{image_name}_f{fidx+1}.jpg')
# print(f"{image_name}: ", data_item['conversations'])
# exit(0)
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
num_patches_list, images_list, merged_regions_list, crop_regions_list, num_vprompts_list = [], [], [], [], []
for image, visual_prompts, merged_visual_prompt in zip(images, visual_prompts_list, merged_visual_prompts):
try:
_images, regions, merged_regions = dynamic_preprocess(
image, visual_prompts, merged_visual_prompt, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch,
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
except AssertionError as e:
return None
images_list.extend(_images)
merged_regions_list.extend(merged_regions)
crop_regions_list.extend(regions)
num_patches_list.append(len(_images))
num_vprompts_list.append(len(regions))
else:
raise NotImplementedError
# Apply the transformation to each image and stack the results into a tensor
pixel_values = [self.transform(image) for image in images_list]
pixel_values = torch.stack(pixel_values) # num_patch, channels, h, w
merged_visual_prompts = [self.transform(merged_region) for merged_region in merged_regions_list]
merged_visual_prompts = torch.stack(merged_visual_prompts)
transformed_visual_prompts = []
for region in crop_regions_list:
transformed_regions = []
for _region in region:
resized_region = cv2.resize(
_region[:, :, np.newaxis], dsize=(self.image_size, self.image_size),
interpolation=cv2.INTER_NEAREST_EXACT)
transformed_regions.append(torch.from_numpy(resized_region).squeeze(-1))
transformed_visual_prompts.append(torch.stack(transformed_regions))
visual_prompts = torch.stack(transformed_visual_prompts) # num_prompts, num_patch, h, w
assert merged_visual_prompts.shape[:2] == pixel_values.shape[:2]
if self.vfm_name == "DINOv2":
OT_FORCE_IMAGE_SIZE = 512
elif self.vfm_name in ["RADIO", "ConvNext"]:
OT_FORCE_IMAGE_SIZE = 1024
else:
raise NotImplementedError
ot_pixel_values = []
for fi, image in enumerate(images):
w, h = image.size
if w > h:
target_size = (OT_FORCE_IMAGE_SIZE, int(h/w*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(w/h*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_image = image.resize(target_size)
cur_w, cur_h = resized_image.size
padded_image = np.ones(shape=(OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE, 3), dtype=np.uint8) * 255
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
ot_pixel_values.append(self.ot_image_processor(images=Image.fromarray(padded_image), return_tensors='pt').pixel_values)
# ot_pixel_values = [self.ot_image_processor(images=image, return_tensors='pt').pixel_values for image in images]
ot_pixel_values = torch.cat(ot_pixel_values)
ot_visual_prompts = torch.from_numpy(np.concatenate(visual_prompts_list, axis=0)).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
h, w = ot_visual_prompts.shape[-2:]
if h > w:
target_size = (OT_FORCE_IMAGE_SIZE, int(w/h*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(h/w*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1)
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE))
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts
# Ensure that there is only one patch if dynamic image size is not enabled
num_patches = pixel_values.size(0)
if not self.dynamic_image_size:
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
# Selcet the appropriate preprocessing function based on the template name
preprocess_function = self.get_preprocess_function()
# Preprocess the conversations and generate the return dictionary
if gt_region_id != object_ids[-1][0] and gt_region_id != -1:
print("query object id doesn't match with the candidate ids.")
return None
region_ids = [[gt_region_id for _ in object_ids[fidx]]
for fidx in range(len(num_vprompts_list)-1)] #+ [object_ids[-1],]
object_tokens_str = ""
for fidx, object_ids_fidx in enumerate(region_ids):
object_tokens_str = object_tokens_str + f"Objects in Image-{fidx+1}: "
for object_id in range(1, len(object_ids_fidx)+1):
object_tokens_str = object_tokens_str + f"<query object>{VPT_CONTEXT_TOKEN}, "
object_tokens_str = object_tokens_str[:-2] + ".\n"
sorted_indices = sorted(range(len(object_ids[-1])), key=lambda k: object_ids[-1][k])
sorted_cand_object_ids = []
object_tokens_str = object_tokens_str + f"Objects in Image-{len(object_ids)}: "
for sorted_idx in sorted_indices:
object_id = object_ids[-1][sorted_idx]
object_tokens_str = object_tokens_str + f"<object-{object_id}>{VPT_CONTEXT_TOKEN}, "
sorted_cand_object_ids.append(object_id)
object_tokens_str = object_tokens_str[:-2] + ".\n"
region_ids = region_ids + [sorted_cand_object_ids, ]
total_vprompts = resized_padded_ot_visual_prompts.shape[0]
cand_visual_prompts = resized_padded_ot_visual_prompts[total_vprompts-num_vprompts_list[-1]:]
sorted_cand_visual_prompts = []
for sorted_idx in sorted_indices:
sorted_cand_visual_prompts.append(cand_visual_prompts[sorted_idx])
sorted_cand_visual_prompts = torch.stack(sorted_cand_visual_prompts)
resized_padded_ot_visual_prompts = torch.cat(
[resized_padded_ot_visual_prompts[:total_vprompts-num_vprompts_list[-1]], sorted_cand_visual_prompts])
# # ABLATION
# internvl_cand_visual_prompts = visual_prompts[total_vprompts-num_vprompts_list[-1]:]
# sorted_internvl_cand_visual_prompts = []
# for sorted_idx in sorted_indices:
# sorted_internvl_cand_visual_prompts.append(internvl_cand_visual_prompts[sorted_idx])
# sorted_internvl_cand_visual_prompts = torch.stack(sorted_internvl_cand_visual_prompts)
# visual_prompts = torch.cat([
# visual_prompts[:total_vprompts-num_vprompts_list[-1]], sorted_internvl_cand_visual_prompts
# ])
ret = preprocess_function(self.template, [deepcopy(data_item['conversations'])],
self.tokenizer, [self.patch_token * num_patch for num_patch in num_patches_list],
group_by_length=self.group_by_length, ds_name="XXX",
num_image=len(num_patches_list), object_tokens_str=object_tokens_str,)
roi_version = self.dataset_map_fn.__name__ == "match_reasoning_map_fn_roi"
# print("roi_version: ", roi_version)
# exit(0)
# Create the final return dictionary
ret = dict(
input_ids=ret['input_ids'][0],
labels=ret['labels'][0],
attention_mask=ret['attention_mask'][0],
pixel_values=pixel_values if not roi_version else merged_visual_prompts,
merged_visual_prompts=merged_visual_prompts if not roi_version else pixel_values,
image_flags=torch.tensor([1] * num_patches, dtype=torch.long),
num_patches=num_patches_list,
visual_prompts=visual_prompts.flatten(0, 1),
num_vprompts=num_vprompts_list,
vprompt_flags=[[1 for _ in range(nvp)] for nvp in num_vprompts_list],
num_images=len(num_vprompts_list),
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=resized_padded_ot_visual_prompts,
region_ids=region_ids,
)
return ret
def video_get_item(self, data_item):
raise NotImplementedError
def pure_text_get_item(self, data_item):
ori_height = ori_width = 448
image = Image.new('RGB', (ori_height, ori_width), (255, 255, 255))
merged_visual_prompts = np.zeros((ori_height, ori_width, 3), dtype=np.uint8)
merged_visual_prompts = Image.fromarray(merged_visual_prompts)
# pad to square
image = expand2square(
image,
tuple(int(x * 255) for x in self.IMAGENET_MEAN))
images = [image]
merged_visual_prompts = expand2square(
merged_visual_prompts,
(0, 0, 0)
)
merged_regions = [merged_visual_prompts]
# Apply the transformation to each image and stack the results into a tensor
pixel_values = [self.transform(image) for image in images]
pixel_values = torch.stack(pixel_values) # num_patch, channels, h, w
merged_visual_prompts = [self.transform(merged_region) for merged_region in merged_regions]
merged_visual_prompts = torch.stack(merged_visual_prompts)
visual_prompts = torch.zeros(size=(
merged_visual_prompts.shape[0], merged_visual_prompts.shape[-2], merged_visual_prompts.shape[-1]),
dtype=torch.long).to(merged_visual_prompts.device)
if self.vfm_name == "DINOv2":
OT_FORCE_IMAGE_SIZE = 512
elif self.vfm_name in ["RADIO", "ConvNext"]:
OT_FORCE_IMAGE_SIZE = 1024
else:
raise NotImplementedError
image = Image.new('RGB', (OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE), (255, 255, 255))
ot_pixel_values = self.ot_image_processor(images=image, return_tensors='pt').pixel_values
ot_visual_prompts = torch.zeros((1, OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE)).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
# assert ot_pixel_values.shape[-2:] == ot_visual_prompts.shape[-2:], f"ot_pixel_values.shape: {ot_pixel_values.shape[-2:]}, ot_visual_prompts.shape: {ot_visual_prompts.shape[-2:]}"
# Ensure that there is only one patch if dynamic image size is not enabled
num_patches = pixel_values.size(0)
if not self.dynamic_image_size:
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
# Selcet the appropriate preprocessing function based on the template name
preprocess_function = self.get_preprocess_function()
# Preprocess the conversations and generate the return dictionary
ret = preprocess_function(self.template, [deepcopy(data_item['conversations'])],
self.tokenizer, [self.patch_token * num_patches], text_only=True,
group_by_length=self.group_by_length, ds_name="XXX",
num_image=0)
# Create the final return dictionary
ret = dict(
input_ids=ret['input_ids'][0],
labels=ret['labels'][0],
attention_mask=ret['attention_mask'][0],
pixel_values=pixel_values,
merged_visual_prompts=merged_visual_prompts,
image_flags=torch.tensor([0] * num_patches, dtype=torch.long),
num_patches=[num_patches, ],
visual_prompts=visual_prompts,
num_vprompts=[1, ],
vprompt_flags=[[0,],],
num_images=1,
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=ot_visual_prompts,
region_ids=[[1,],],
)
return ret
|