File size: 17,487 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import io
import math
import base64
import torch
import copy

import torchvision.transforms as transforms
import numpy as np
from PIL import Image
from einops import rearrange

from transformers import GenerationConfig, DynamicCache
from projects.ST.models.models_modeling_qwen2mm_mmrope import Qwen2MMmropeForCausalLM
from transformers import AutoTokenizer

def get_transformer_and_tokenizer(model_path, tokenizer_path):
    model = Qwen2MMmropeForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, use_cache=False)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
    tokenizer.vis_beg_tok = "<vision>"
    tokenizer.vis_patch_tok = "<vpatch>"
    tokenizer.vis_rsep_tok = "<vrow_sep>"
    tokenizer.vis_frm_tok = "<vframe_sep>"
    tokenizer.vis_end_tok = "</vision>"
    tokenizer.vis_cls_tok = "<|vis_cls|>"

    tokenizer.vis_beg_tok_id = tokenizer.convert_tokens_to_ids("<vision>")
    tokenizer.vis_patch_tok_id = tokenizer.convert_tokens_to_ids("<vpatch>")
    tokenizer.vis_rsep_tok_id = tokenizer.convert_tokens_to_ids("<vrow_sep>")
    tokenizer.vis_frm_tok_id = tokenizer.convert_tokens_to_ids("<vframe_sep>")
    tokenizer.vis_end_tok_id = tokenizer.convert_tokens_to_ids("</vision>")
    tokenizer.vis_cls_tok_id = tokenizer.convert_tokens_to_ids("<|vis_cls|>")
    return model, tokenizer

DEFAULT_PATCH_SIZE = 32
MAX_RESOLUTION = 1024
VISION_TOKENS = [
    "<vision>",  # vision begin
    "<vpatch>",  # patch
    "<vrow_sep>",  # row separator
    "<vframe_sep>",  # for video use case
    "</vision>",  # vision end
    "<|vis_cls|>"
    # *position_tokens,
]
NON_VISION_TOKEN_ID = -1
PROMPT_TMPL = '<|im_start|>user\n{input}<|im_end|>\n'


def load_image_to_base64(image_path: str) -> str:
    # convert image to jpeg, then to data:image/jpeg;base64,
    with open(image_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
    return f"data:image/jpeg;base64,{encoded_string}"


def load_base64_to_PILImage(base64_string: str) -> Image:
    # convert data:image/jpeg;base64, to jpeg
    base64_string = base64_string.split(",")[1]
    decoded_string = base64.b64decode(base64_string)
    return Image.open(io.BytesIO(decoded_string)).convert('RGB')


def get_resize_output_image_size(
        image_size, patch_size, fix_res_size=None
) -> tuple:
    if fix_res_size is not None:
        return fix_res_size, fix_res_size

    l1, l2 = image_size  # 540, 32
    short, long = (l2, l1) if l2 <= l1 else (l1, l2)

    # set the nearest multiple of PATCH_SIZE for `long`
    requested_new_long = min(
        [
            math.ceil(long / patch_size) * patch_size,
            MAX_RESOLUTION,
        ]
    )

    new_long, new_short = requested_new_long, int(requested_new_long * short / long)

    new_short = math.ceil(new_short / patch_size) * patch_size
    return (new_long, new_short) if l2 <= l1 else (new_short, new_long)


def preprocess_image(
        image_tensor: torch.Tensor,
        patch_size: int = DEFAULT_PATCH_SIZE
) -> torch.Tensor:
    # Reshape the image to get the patches
    # shape changes: (C=3, H, W)
    # -> (C, N_H_PATCHES, W, PATCH_H)
    # -> (C, N_H_PATCHES, N_W_PATCHES, PATCH_H, PATCH_W)
    patches = image_tensor.unfold(1, patch_size, patch_size) \
        .unfold(2, patch_size, patch_size)
    patches = patches.permute(1, 2, 0, 3, 4).contiguous()  # -> (N_H_PATCHES, N_W_PATCHES, C, PATCH_H, PATCH_W)
    return patches


def get_transform(height, width):
    preprocess_transform = transforms.Compose([
        transforms.Resize((height, width)),
        transforms.ToTensor(),  # Convert the image to a PyTorch tensor
        transforms.Normalize(mean=[0.485, 0.456, 0.406],  # Normalize with mean and
                             std=[0.229, 0.224, 0.225])  # standard deviation for pre-trained models on ImageNet
    ])
    return preprocess_transform


def convert_image_base64_to_patches(base64_image: str, patch_size: int, fix_res_size: int = None) -> torch.Tensor:
    img_pil = load_base64_to_PILImage(base64_image)
    # resize the image to the nearest multiple of patch_size
    width, height = img_pil.size
    new_width, new_height = get_resize_output_image_size((width, height), patch_size=patch_size,
                                                         fix_res_size=fix_res_size)
    img_tensor = get_transform(new_height, new_width)(img_pil)  # 3,height, width
    img_patches = preprocess_image(img_tensor, patch_size=patch_size)  # seq_length, 64*64*3
    return img_patches


def prepare_image_textual_seq(h, w, tokenizer, add_cls=True):
    seq = ""
    tok_len = 0

    seq += tokenizer.vis_beg_tok
    tok_len += 1
    for _ in range(h - 1):
        seq += tokenizer.vis_patch_tok * w + tokenizer.vis_rsep_tok
        tok_len += (w + 1)
    seq += tokenizer.vis_patch_tok * w + tokenizer.vis_end_tok
    tok_len += (w + 1)
    if add_cls:
        seq += tokenizer.vis_cls_tok
        tok_len += 1

    return seq, tok_len


def prepare_image_textual_seq_norowsep(h, w, tokenizer, add_cls=True):
    seq = ""
    tok_len = 0

    seq += tokenizer.vis_beg_tok
    tok_len += 1

    seq += tokenizer.vis_patch_tok * (w * h)
    tok_len += (w * h)

    seq += tokenizer.vis_end_tok
    tok_len += 1

    if add_cls:
        seq += tokenizer.vis_cls_tok
        tok_len += 1

    return seq, tok_len


def create_single_prefix_mask(prefix_len, max_len):
    attn_mask = torch.zeros(max_len, max_len)
    attn_mask[:prefix_len, :prefix_len] = 1
    causal_mask = torch.tril(torch.ones(max_len, max_len))
    attn_mask = attn_mask.bool() | causal_mask.bool()
    return attn_mask


def generate_mm_pos_ids_singleit(input_ids, vpatch_id, h, w):
    input_ids_pt = torch.Tensor(input_ids).int()
    vpatch_pos = torch.argwhere(input_ids_pt == vpatch_id)
    vpatch_start_pos = vpatch_pos[0].item()
    nt = len(input_ids) - (h * w) + 1

    # v_pos
    t_indices = torch.arange(1)
    h_indices = torch.arange(h)
    w_indices = torch.arange(w)
    v_pos_id = torch.stack(torch.meshgrid(t_indices, h_indices, w_indices, indexing='ij'), dim=0)
    v_pos_id = rearrange(v_pos_id, "d t h w -> (t h w) d")  # [h*w, 3]
    v_pos_id += vpatch_start_pos
    position_id = torch.cat(
        [
            torch.arange(vpatch_start_pos).unsqueeze(-1).repeat(1, 3),
            v_pos_id,
            torch.arange(nt - vpatch_start_pos - 1).unsqueeze(-1).repeat(1, 3) + v_pos_id.max() + 1,
        ],
        dim=0
    )
    assert len(input_ids) == position_id.size(0)
    position_id = rearrange(position_id, "slen d -> d slen").long()

    return position_id


class Qwen2mmMROPEModel:
    INSTALL_REQ = False
    INTERLEAVE = False

    def __init__(self, model_path='/mnt/bn/zilongdata-us/weixian/ckpt/qwen2mm-7B-mrope',
                 tokenizer_path="/mnt/bn/zilongdata-us/weixian/ckpt/Qwen2.5MM-7B-ext-psz16", fix_res_size=None,
                 **kwargs):

        model, tokenizer = get_transformer_and_tokenizer(
            model_path, tokenizer_path
        )
        self.model = model.cuda().eval()
        self.tokenizer = tokenizer

        self.image_processor = lambda x: convert_image_base64_to_patches(load_image_to_base64(x),
                                                                         model.config.vision_patch_size,
                                                                         fix_res_size=fix_res_size)
        self.kwargs = kwargs

    def prepare_input(self, image, text_input):

        text_input = text_input.replace("<image>\n", '').replace("\n<image>", '').replace("<image> ", '').replace(
            " <image>", '')
        bos_token = '' if self.tokenizer.bos_token is None else self.tokenizer.bos_token
        text_input = bos_token + PROMPT_TMPL.format(input=text_input.strip())

        if image is not None:
            tokens = []
            vision_patch_indices = []
            vision_patches = []

            patches = image
            n_rows, n_cols = patches.shape[:2]
            n_patches = n_rows * n_cols
            patches = patches.view(n_patches, -1)

            # ---
            image_text_seq, image_tok_len = prepare_image_textual_seq_norowsep(n_rows, n_cols, self.tokenizer,
                                                                               add_cls=False)
            # ---
            cur_tokens_pt = self.tokenizer(image_text_seq, add_special_tokens=False,
                                           return_tensors="pt").input_ids.squeeze(0)
            cur_patch_indices = torch.full_like(cur_tokens_pt, fill_value=NON_VISION_TOKEN_ID)
            assert (cur_tokens_pt == self.tokenizer.vis_patch_tok_id).sum() == n_patches
            assert (cur_tokens_pt >= self.tokenizer.vis_beg_tok_id).sum() == image_tok_len
            cur_patch_indices[cur_tokens_pt == self.tokenizer.vis_patch_tok_id] = torch.arange(n_patches)

            cur_tokens = cur_tokens_pt.cpu().numpy().tolist()
            cur_patch_indices = cur_patch_indices.cpu().numpy().tolist()
            assert len(cur_tokens) == len(cur_patch_indices)

            tokens.extend(cur_tokens)
            vision_patch_indices.extend(cur_patch_indices)
            vision_patches.extend(patches.numpy().astype(np.float16))

            # For text after images
            _tokenized_text = self.tokenizer(text_input, return_tensors="pt", add_special_tokens=False)
            cur_tokens = _tokenized_text["input_ids"].squeeze(0)
            tokens.extend(cur_tokens)
            vision_patch_indices.extend([NON_VISION_TOKEN_ID] * len(cur_tokens))

            position_ids = generate_mm_pos_ids_singleit(tokens, self.tokenizer.vis_patch_tok_id, n_rows,
                                                        n_cols)  # [3, slen]
            attention_mask_4d = create_single_prefix_mask(image_tok_len, len(tokens)).unsqueeze(0)  # [1, slen, slen]
            print('ids: ', tokens)
            tokens = torch.Tensor(tokens).long()
            print('vision_patches_indices: ', vision_patch_indices)
            vision_patch_indices = torch.Tensor(vision_patch_indices).long()
            if len(vision_patches) > 0:
                # convert vision patches to numpy
                vision_patches = np.array(vision_patches)
                vision_patches = torch.Tensor(vision_patches).bfloat16()
            else:
                vision_patches = None

            tokens = tokens.unsqueeze(0)
            position_ids = position_ids.unsqueeze(1)
            attention_mask_4d = attention_mask_4d.unsqueeze(0)
            vision_patch_indices = vision_patch_indices.unsqueeze(0)
            attn_mask_for_gen = torch.ones_like(tokens)

            return dict(
                input_ids=tokens.to("cuda"),
                position_ids=position_ids.to("cuda"),
                attention_mask=attn_mask_for_gen.to("cuda"),
                vision_patches=vision_patches.to("cuda"),
                vision_patch_indices=vision_patch_indices.to("cuda"),
                attention_mask_4d=attention_mask_4d.to("cuda"),
                image_tokens_len=image_tok_len
            )

        # image is None
        _text_inputs = self.tokenizer(text_input, return_tensors="pt", add_special_tokens=False)
        text_input_ids = _text_inputs['input_ids']
        text_attn_mask = _text_inputs['attention_mask']
        text_position_ids = torch.arange(text_input_ids.size(-1)).unsqueeze(0).expand(3, -1).clone().long()
        return dict(
            input_ids=text_input_ids.long().to("cuda"),
            attention_mask=text_attn_mask.long().to("cuda"),
            position_ids=text_position_ids.unsqueeze(1).to("cuda"),
            vision_patches=None,
            vision_patch_indices=None,
            attention_mask_4d=None,
            image_tokens_len=None
        )

    def message_to_promptimg(self, message, dataset=None):
        assert not self.INTERLEAVE
        num_images = len([x for x in message if x['type'] == 'image'])
        if num_images == 0:
            prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
            image = None
        else:
            prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
            images = [x['value'] for x in message if x['type'] == 'image']
            image = images[0]
        return prompt, image

    def generate_inner(self, message, dataset=None):
        prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
        image_patches = None if image_path is None else \
            self.image_processor(image_path)
        inputs = self.prepare_input(image_patches, prompt)

        past_key_values = None
        image_tok_len = inputs.pop("image_tokens_len")
        attention_mask_4d = inputs.pop("attention_mask_4d")
        if image_tok_len is not None and attention_mask_4d is not None:
            assert (attention_mask_4d[:, :, :image_tok_len, :image_tok_len] == 1).all()
            assert inputs["vision_patches"] is not None
            assert inputs["vision_patch_indices"] is not None
            prefix_cache = DynamicCache()
            cache_inputs = dict(
                input_ids=inputs['input_ids'][:, :image_tok_len],
                position_ids=inputs['position_ids'][:, :, :image_tok_len],
                attention_mask=attention_mask_4d[:, :, :image_tok_len, :image_tok_len],
                vision_patches=inputs['vision_patches'],
                vision_patch_indices=inputs['vision_patch_indices'][:, :image_tok_len],
            )
            with torch.no_grad():
                prefix_cache = self.model(**cache_inputs, past_key_values=prefix_cache, use_cache=True).past_key_values
            past_key_values = copy.deepcopy(prefix_cache)

        generation_args = GenerationConfig(
            do_sample=False,
            top_p=None,
            temperature=0,
            num_beams=1,
            max_new_tokens=128,
            pad_token_id=self.tokenizer.eos_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
        )

        generate_ids = self.model.generate(
            **inputs,
            past_key_values=past_key_values,
            use_cache=True,
            eos_token_id=self.tokenizer.eos_token_id,
            generation_config=generation_args
        )
        print(generate_ids)
        # generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
        response = self.tokenizer.batch_decode(
            generate_ids,
            skip_special_tokens=False,
            clean_up_tokenization_spaces=False
        )[0]
        return response

    def generate_ext_eval(self, args, prompt, image_path=None, generate_config=None):
        image_patches = None if image_path is None else \
            self.image_processor(image_path)
        inputs = self.prepare_input(image_patches, prompt)

        past_key_values = None
        image_tok_len = inputs.pop("image_tokens_len")
        attention_mask_4d = inputs.pop("attention_mask_4d")
        if image_tok_len is not None and attention_mask_4d is not None:
            assert (attention_mask_4d[:, :, :image_tok_len, :image_tok_len] == 1).all()
            assert inputs["vision_patches"] is not None
            assert inputs["vision_patch_indices"] is not None
            prefix_cache = DynamicCache()
            cache_inputs = dict(
                input_ids=inputs['input_ids'][:, :image_tok_len],
                position_ids=inputs['position_ids'][:, :, :image_tok_len],
                attention_mask=attention_mask_4d[:, :, :image_tok_len, :image_tok_len],
                vision_patches=inputs['vision_patches'],
                vision_patch_indices=inputs['vision_patch_indices'][:, :image_tok_len],
            )
            with torch.no_grad():
                prefix_cache = self.model(**cache_inputs, past_key_values=prefix_cache, use_cache=True).past_key_values
            past_key_values = copy.deepcopy(prefix_cache)

        generation_args = GenerationConfig(
            do_sample=True if args.temperature > 0 else False,
            temperature=args.temperature,
            num_beams=args.num_beams,
            max_new_tokens=args.max_new_tokens,
            min_new_tokens=1,
            pad_token_id=self.tokenizer.eos_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
        ) if generate_config is None else GenerationConfig(**generate_config)

        generate_ids = self.model.generate(
            **inputs,
            past_key_values=past_key_values,
            use_cache=True,
            eos_token_id=self.tokenizer.eos_token_id,
            generation_config=generation_args
        )
        generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
        response = self.tokenizer.batch_decode(
            generate_ids,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )[0]
        return response

tokenizer_path = './pretrained/single_transformer/capcls1.0_1024M_imgfull_withpt_lr5e-4-0_rp0.1_iter62500_hf/'
path = './pretrained/single_transformer/SFT-Qwen2.5-0.5B-capcls1.0_1024M_iter_62500_lr5e-4_0_rp0.1_hf_llava/'
evaluation_images = './projects/omg_llava/test.jpg'
evaluation_inputs = ['Please describe this picture']

messages = []
messages.append({'type': 'image', 'value': evaluation_images})
messages.append({'type': 'text', 'value': evaluation_inputs[0]})

model = Qwen2mmMROPEModel(model_path=path, tokenizer_path=tokenizer_path)
ret = model.generate_inner(message=messages)
print(ret)