File size: 14,957 Bytes
032e687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
PROMPT_TEMPLATE, SYSTEM_TEMPLATE)
import argparse
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.fileio import PetrelBackend, get_file_backend
from xtuner.configs import cfgs_name_path
from xtuner.model.utils import guess_load_checkpoint
from xtuner.registry import BUILDER
from PIL import Image
import cv2
sam_prefix = '/mnt/bn/xiangtai-training-data-video/dataset/segmentation_datasets/sam_v_full/sav_000/sav_train/sav_000/'
coco_prefix = 'data/glamm_data/images/coco2014/train2014/'
sam_p2 = 'data/sa_eval/'
demo_items = [
# {'image_path': './work_dirs/demo_figs/french-bulldog-8163486_1280.jpg', 'question': '<image>\nPlease detailed describe the image.'},
# {'image_path': './work_dirs/demo_figs/sunset-8064078_1280.jpg', 'question': '<image>\nPlease detailed describe the image.'},
# {'image_path': './work_dirs/demo_figs/traditional-8503473_1280.jpg', 'question': '<image>\nPlease detailed describe the image.'},
# {'image_path': './work_dirs/demo_figs/traditional-8503473_1280.jpg', 'question': '<image>\nWhat the women is doing?'},
# {'image_path': './work_dirs/demo_figs/lemon-cake-8274419_1280.jpg', 'question': '<image>\nPlease segment the sourest thing in the picture.'},
# {'image_path': './work_dirs/demo_figs/canoe-7541311_1280.jpg', 'question': '<image>\nPlease detailed describe the man.'},
# {'image_path': './work_dirs/demo_figs/canoe-7541311_1280.jpg', 'question': '<image>\nPlease segment the tool that the man uses to push the boat.'},
# {'image_path': './work_dirs/demo_figs/canoe-7541311_1280.jpg', 'question': '<image>\nPlease segment what is supporting the man to keep him afloat on the water.'},
# {'image_path': './work_dirs/demo_figs/canoe-7541311_1280.jpg', 'question': '<image>\n.If the man accidentally falls into the water, what in the image will help him avoid drowning?'},
# {'image_path': './work_dirs/demo_figs/hut-8843868_1280.jpg', 'question': '<image>\n.Please segment the house.'},
# {'image_path': './work_dirs/demo_figs/hut-8843868_1280.jpg', 'question': '<image>\n.Please segment the reflection of the house in the water.'},
# {'image_path': './work_dirs/demo_figs/ai-generated-8637800_1280.jpg', 'question': '<image>\nWhat is unusual about this picture?'},
# {'image_path': './work_dirs/demo_figs/spaghetti-6639970_1280.jpg', 'question': '<image>\nPlease segment the cooker.'},
# {'image_path': './work_dirs/demo_figs/spaghetti-6639970_1280.jpg', 'question': '<image>\nPlease segment the cooked pasta.'},
#
# {'image_path': './work_dirs/demo_figs/bmx-5142643_1280.jpg', 'question': '<image>\nPlease segment the cameraman in the image.'},
# {'image_path': './work_dirs/demo_figs/bmx-5142643_1280.jpg', 'question': '<image>\nPlease segment the person who is riding the bicycle.'},
# {'image_path': './work_dirs/demo_figs/bmx-5142643_1280.jpg', 'question': '<image>\nPlease segment the the bicycle.'},
#
# {'image_path': './work_dirs/demo_figs/car-7862030_1280.jpg', 'question': '<image>\nPlease segment the car nearest the camera.'},
#
# {'image_path': './work_dirs/demo_figs/pham-ngu-lao-3989110_1280.jpg', 'question': '<image>\nPlease segment the red electric motorcycle ridden by a man.'},
# {'image_path': './work_dirs/demo_figs/pham-ngu-lao-3989110_1280.jpg', 'question': '<image>\nPlease segment the trash can with "E14".'},
# {'image_path': './work_dirs/demo_figs/pham-ngu-lao-3989110_1280.jpg', 'question': '<image>\nPlease segment the garbage bags.'},
# {'image_path': sam_prefix+'sav_000003.mp4', 'question': '<image>\nPlease describe the video.'},
# {'image_path': sam_prefix+'sav_000003.mp4', 'question': '<image>\nHow many dogs in the video?'},
# {'image_path': sam_prefix+'sav_000004.mp4', 'question': '<image>\nHow many handbags is brought by the man?'},
# {'image_path': sam_prefix+'sav_000001.mp4', 'question': '<image>\nWhat the child is doing?'},
# {'image_path': sam_prefix+'sav_000021.mp4', 'question': '<image>\nPlease describe the video.'},
# {'image_path': sam_prefix+'sav_000039.mp4', 'question': '<image>\nIs the red car in the video moving or stationary?'},
# {'image_path': sam_prefix+'sav_000042.mp4', 'question': '<image>\nPlease describe the man\'s actions in the video.'},
{'image_path': coco_prefix+'COCO_train2014_000000581921.jpg', 'question': '<image>\nPlease describe the image.'},
{'image_path': coco_prefix+'COCO_train2014_000000581921.jpg', 'question': '<image>\nPlease segment the snowboarder.'},
{'image_path': coco_prefix+'COCO_train2014_000000581921.jpg', 'question': '<image>\nPlease segment the snowboard.'},
{'image_path': coco_prefix+'COCO_train2014_000000581921.jpg', 'question': '<image>\nPlease segment the person.'},
{'image_path': coco_prefix+'COCO_train2014_000000581921.jpg', 'question': '<image>\nPlease segment the forest.'},
{'image_path': coco_prefix + 'COCO_train2014_000000000025.jpg', 'question': '<image>\nWhat kind of animal is in the picture?'},
# {'image_path': coco_prefix + 'COCO_train2014_000000000025.jpg',
# 'question': '<image>\nWhat is the giraffe doing?'},
# {'image_path': sam_p2+'sav_053576.mp4', 'question': '<image>\nPlease describe the video.'}
# {'image_path': sam_p2+'sav_053474.mp4', 'question': '<image>\nWhat is the weather now?'},
# {'image_path': sam_p2 + 'sav_053474.mp4', 'question': '<image>\nWhat is the speed limit in this road?'},
# {'image_path': sam_p2 + 'sav_053474.mp4', 'question': '<image>\nWhat is the color of the front car?'},
# {'image_path': "./1215_demos/qilu.jpg", 'question': '<image>\nPlease detailed describe the image.'},
# {'image_path': "./1215_demos/qilu.jpg", 'question': '<image>\nPlease detailed describe the image and response with segmentation masks.'},
# {'image_path': sam_p2 + "sora_tokyo_walk.mp4", 'question': '<image>\nWhich country do you think this is?'},
]
TORCH_DTYPE_MAP = dict(
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
def remove_prefix(state_dict, prefix):
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith(prefix):
new_key = key[len(prefix):]
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
return new_state_dict
def get_video_frames(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Cannot open video file.")
return
frames = []
frame_id = 0
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
frame_id += 1
cap.release()
return frames
def get_frames_from_video(video_path, n_frames=5):
frames = get_video_frames(video_path)
stride = len(frames) / (n_frames + 1e-4)
ret = []
for i in range(n_frames):
idx = int(i * stride)
frame = frames[idx]
frame = frame[:, :, ::-1]
frame_image = Image.fromarray(frame).convert('RGB')
ret.append(frame_image)
return ret
def parse_args():
parser = argparse.ArgumentParser(description='Chat with a HF model')
parser.add_argument('config', help='config file name or path.')
parser.add_argument('pth_model', help='pth model file')
parser.add_argument('--image', default=None, help='image')
parser.add_argument(
'--torch-dtype',
default='fp16',
choices=TORCH_DTYPE_MAP.keys(),
help='Override the default `torch.dtype` and load the model under '
'a specific `dtype`.')
parser.add_argument(
'--prompt-template',
choices=PROMPT_TEMPLATE.keys(),
default="phi3_chat",
help='Specify a prompt template')
system_group = parser.add_mutually_exclusive_group()
system_group.add_argument(
'--system', default=None, help='Specify the system text')
system_group.add_argument(
'--system-template',
choices=SYSTEM_TEMPLATE.keys(),
default=None,
help='Specify a system template')
parser.add_argument(
'--bits',
type=int,
choices=[4, 8, None],
default=None,
help='LLM bits')
parser.add_argument(
'--bot-name', type=str, default='BOT', help='Name for Bot')
parser.add_argument(
'--with-plugins',
nargs='+',
choices=['calculate', 'solve', 'search'],
help='Specify plugins to use')
parser.add_argument(
'--no-streamer', action='store_true', help='Whether to with streamer')
parser.add_argument(
'--lagent', action='store_true', help='Whether to use lagent')
parser.add_argument(
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
parser.add_argument(
'--offload-folder',
default=None,
help='The folder in which to offload the model weights (or where the '
'model weights are already offloaded).')
parser.add_argument(
'--max-new-tokens',
type=int,
default=2048,
help='Maximum number of new tokens allowed in generated text')
parser.add_argument(
'--temperature',
type=float,
default=0.1,
help='The value used to modulate the next token probabilities.')
parser.add_argument(
'--top-k',
type=int,
default=40,
help='The number of highest probability vocabulary tokens to '
'keep for top-k-filtering.')
parser.add_argument(
'--top-p',
type=float,
default=0.75,
help='If set to float < 1, only the smallest set of most probable '
'tokens with probabilities that add up to top_p or higher are '
'kept for generation.')
parser.add_argument(
'--repetition-penalty',
type=float,
default=1.0,
help='The parameter for repetition penalty. 1.0 means no penalty.')
parser.add_argument(
'--seed',
type=int,
default=0,
help='Random seed for reproducible text generation')
args = parser.parse_args()
return args
def get_input():
"""Helper function for getting input from users."""
sentinel = '' # ends when this string is seen
result = None
while result is None:
print(('\ndouble enter to end input (EXIT: exit chat, '
'RESET: reset history) >>> '),
end='')
try:
result = '\n'.join(iter(input, sentinel))
except UnicodeDecodeError:
print('Invalid characters detected. Please enter again.')
return result
def main():
args = parse_args()
torch.manual_seed(args.seed)
# parse config
if not osp.isfile(args.config):
try:
args.config = cfgs_name_path[args.config]
except KeyError:
raise FileNotFoundError(f'Cannot find {args.config}')
# load config
cfg = Config.fromfile(args.config)
# if args.cfg_options is not None:
# cfg.merge_from_dict(args.cfg_options)
cfg.model.pretrained_pth = None
model = BUILDER.build(cfg.model)
backend = get_file_backend(args.pth_model)
if isinstance(backend, PetrelBackend):
from xtuner.utils.fileio import patch_fileio
with patch_fileio():
state_dict = guess_load_checkpoint(args.pth_model)
else:
state_dict = guess_load_checkpoint(args.pth_model)
# del state_dict['llm.base_model.model.model.tok_embeddings.weight']
model.load_state_dict(state_dict, strict=False)
print(f'Load PTH model from {args.pth_model}')
if False:
pass
else:
if args.with_plugins is None:
inner_thoughts_open = False
calculate_open = False
solve_open = False
search_open = False
else:
assert args.prompt_template == args.system_template == 'moss_sft'
from plugins import plugins_api
inner_thoughts_open = True
calculate_open = 'calculate' in args.with_plugins
solve_open = 'solve' in args.with_plugins
search_open = 'search' in args.with_plugins
# pre-import for api and model preparation
if calculate_open:
from plugins import calculate # noqa: F401
if solve_open:
from plugins import solve # noqa: F401
if search_open:
from plugins import search # noqa: F401
model.cuda()
model.eval()
model.preparing_for_generation(metainfo={})
for i, demo_item in enumerate(demo_items):
image_path = demo_item['image_path']
text_prompts = demo_item['question']
# There is a video
if '.mp4' in image_path:
ori_image = get_frames_from_video(image_path, n_frames=5)
ori_image_size = ori_image[0].size
input_dict = {
'pixel_values': None,
'text_prompts': text_prompts,
'ori_image': ori_image,
'ori_image_size': ori_image_size,
'mode': 'demo_video',
'masks': None
}
else:
ori_image = Image.open(image_path).convert('RGB')
ori_image_size = ori_image.size
input_dict = {
'text': text_prompts,
'image': ori_image,
}
return_dict = model.predict_forward(**input_dict)
print(i, ': ', return_dict['prediction'])
if 'prediction_masks' in return_dict.keys() and return_dict['prediction_masks'] is not None:
show_mask_pred(ori_image, return_dict['prediction_masks'], save_dir=f'./demos/output_{i}.png')
def show_mask_pred(image, masks, save_dir='./output.png'):
from PIL import Image
import numpy as np
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255),
(255, 255, 0), (255, 0, 255), (0, 255, 255),
(128, 128, 255)]
masks = torch.stack(masks, dim=0).cpu().numpy()[:, 0]
_mask_image = np.zeros((masks.shape[1], masks.shape[2], 3), dtype=np.uint8)
for i, mask in enumerate(masks):
color = colors[i % len(colors)]
_mask_image[:, :, 0] = _mask_image[:, :, 0] + mask.astype(np.uint8) * color[0]
_mask_image[:, :, 1] = _mask_image[:, :, 1] + mask.astype(np.uint8) * color[1]
_mask_image[:, :, 2] = _mask_image[:, :, 2] + mask.astype(np.uint8) * color[2]
image = np.array(image)
image = image * 0.5 + _mask_image * 0.5
image = image.astype(np.uint8)
image = Image.fromarray(image)
image.save(save_dir)
return
if __name__ == '__main__':
main()
|