File size: 8,656 Bytes
032e687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) OpenMMLab. All rights reserved.
import json
import logging
import os

import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset


from xtuner.registry import BUILDER
from xtuner.dataset.utils import expand2square
from .encode_fns import encode_fn
from xtuner.dataset.llava import load_jsonl

from xtuner.dataset.huggingface import build_origin_dataset

import copy
import numpy as np

from projects.omg_llava.dataset.utils import expand2square_mask
import torch.nn.functional as F


class RegionLLaVALazyDataset(Dataset):

    def __init__(self,
                 image_folder,
                 image_processor,
                 data_path=None,
                 tokenizer=None,
                 offline_processed_text_folder=None,
                 max_dataset_length=None,
                 dataset_map_fn=None,
                 template_map_fn=None,
                 max_length=2048,
                 pad_image_to_square=False,
                 lazy=False,
                 feat_down_ratio=14,
                 repeats=1,
                 ):
        super().__init__()

        assert offline_processed_text_folder or (data_path and tokenizer)
        if offline_processed_text_folder and data_path:
            print_log(
                'Both `offline_processed_text_folder` and '
                '`data_path` are set, and we load dataset from'
                '`offline_processed_text_folder` '
                f'({offline_processed_text_folder})',
                logger='current',
                level=logging.WARNING)

        if offline_processed_text_folder is not None:
            self.text_data = load_from_disk(offline_processed_text_folder)
        else:
            print("Loading {}!!!".format(data_path))
            if data_path.endswith('.json'):
                json_data = json.load(open(data_path))
            elif data_path.endswith('.jsonl'):
                json_data = load_jsonl(data_path)
            else:
                raise NotImplementedError
            print("Loaded {}!!!".format(data_path))

            for idx in range(len(json_data)):
                if "id" in json_data[idx].keys() and isinstance(json_data[idx]['id'], int):
                    json_data[idx]['id'] = str(json_data[idx]['id'])
            json_data = DatasetDict({'train': HFDataset.from_list(json_data)})

            assert max_dataset_length is None, "max_dataset_length is not supported in Lazy mode"
            self.text_data = build_origin_dataset(json_data, 'train')

        self.image_folder = image_folder
        if isinstance(image_processor, dict) or isinstance(
                image_processor, Config) or isinstance(image_processor,
                                                       ConfigDict):
            self.image_processor = BUILDER.build(image_processor)
        else:
            self.image_processor = image_processor
        self.image_size = self.image_processor.crop_size
        assert self.image_size['height'] == self.image_size['width']
        self.image_size = self.image_size['height']

        self.feat_size = self.image_size // feat_down_ratio
        self.pad_image_to_square = pad_image_to_square

        # is_lazy = True
        self.lazy = lazy
        if lazy:
            self.tokenizer = tokenizer
            if isinstance(self.tokenizer, dict) or isinstance(self.tokenizer, Config) or isinstance(self.tokenizer, ConfigDict):
                self.tokenizer = BUILDER.build(self.tokenizer)
            self.max_length = max_length

            self.dataset_map_fn = dataset_map_fn
            if isinstance(template_map_fn, dict) or isinstance(template_map_fn, Config) or isinstance(
                template_map_fn, ConfigDict):
                template_map_fn = BUILDER.build(template_map_fn)
            self.template_map_fn = template_map_fn
        self.repeats = repeats

    @property
    def modality_length(self):
        if self.lazy:
            length_list = [1000] * len(self.text_data) * self.repeats
            return length_list

        length_list = []
        for data_dict in self.text_data:
            if 'input_ids' in data_dict.keys():
                cur_len = len(data_dict['input_ids'])
            else:
                cur_len = 1000
            if data_dict.get('image', None) is None:
                cur_len = -cur_len
            length_list.append(cur_len)
        return length_list

    def __len__(self):
        return len(self.text_data) * self.repeats

    def __getitem__(self, index):
        index = index % len(self.text_data)
        data_dict = copy.deepcopy(self.text_data[index])
        if 'image' not in data_dict.keys() and 'image_name' in data_dict.keys():
            data_dict['image'] = data_dict['image_name']
        if data_dict.get('image', None) is not None:
            image_file = data_dict['image']
            image = Image.open(os.path.join(self.image_folder,
                                            image_file)).convert('RGB')
            if self.pad_image_to_square:
                image = expand2square(
                    image,
                    tuple(
                        int(x * 255) for x in self.image_processor.image_mean))
            image = self.image_processor.preprocess(
                image, return_tensors='pt')['pixel_values'][0]
            data_dict['pixel_values'] = image
        else:
            if hasattr(self.image_processor, 'crop_size'):
                crop_size = self.image_processor.crop_size
            else:
                crop_size = self.image_processor.size
            data_dict['pixel_values'] = torch.zeros(3, crop_size['height'],
                                                    crop_size['width'])
        result = self.dataset_map_fn(data_dict)
        data_dict.update(result)

        result = self.template_map_fn(data_dict)
        data_dict.update(result)

        result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
        data_dict.update(result)

        if 'region_masks' not in data_dict.keys():
            region_masks = np.ones((1, self.feat_size, self.feat_size), dtype=np.uint8)
            region_masks = torch.from_numpy(region_masks)
        else:
            region_masks = data_dict['region_masks']
            if self.pad_image_to_square:
                region_masks = expand2square_mask(region_masks)
            region_masks = torch.from_numpy(region_masks)
            region_masks = F.interpolate(region_masks.unsqueeze(0),
                                         size=(self.feat_size, self.feat_size), mode='nearest').squeeze(0)

        data_dict['region_masks'] = region_masks
        return data_dict

class CombineDataset(Dataset):
    def __init__(self,
                 datasets_cfgs,
                 ):
        super().__init__()

        self.datasets = []
        self.datasets_length = []

        self.tokenizer = datasets_cfgs[0].tokenizer
        tokenizer_type = self.tokenizer['type']
        del self.tokenizer['type']
        self.tokenizer = tokenizer_type(**self.tokenizer)

        for i in range(len(datasets_cfgs)):
            datasets_cfgs[i].tokenizer = self.tokenizer

        for dataset_cfg in datasets_cfgs:
            dataset = dataset_cfg['type']
            del dataset_cfg['type']
            dataset = dataset(**dataset_cfg)
            self.datasets.append(dataset)
            self.datasets_length.append(len(dataset))

        self.dataset_threthold = []
        for i, length in enumerate(self.datasets_length):
            if i == 0:
                self.dataset_threthold.append(length)
            else:
                self.dataset_threthold.append(length + self.dataset_threthold[i - 1])

        np.random.seed(42)
        self.shuffled_index = np.arange(self.dataset_threthold[-1])
        np.random.shuffle(self.shuffled_index)

    @property
    def modality_length(self):
        length_list = []
        for dataset in self.datasets:
            length_list += dataset.modality_length
        return length_list

    def __len__(self):
        return self.dataset_threthold[-1]

    def __getitem__(self, index):
        index = int(self.shuffled_index[index])
        for i, thred in enumerate(self.dataset_threthold):
            if index < thred:
                break
        if i == 0:
            _index = index
        else:
            _index = index - self.dataset_threthold[i - 1]

        return self.datasets[i][_index]