File size: 5,870 Bytes
032e687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from torch.optim import AdamW
from transformers import AutoTokenizer
from xtuner.dataset import ConcatDataset
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.utils import PROMPT_TEMPLATE
from xtuner.dataset.map_fns import template_map_fn_factory
from projects.InternVL.collect_fns import internvl_collate_fn
from peft import LoraConfig
from projects.InternVL.internvl import InternVL_vlm
from projects.lisa.datasets.vqa_dataset import LLaVADataset
from projects.llava_sam2.datasets import ReferSegmDataset
from projects.llava_sam2.models.preprocess.image_resize import DirectResize
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
path = './pretrained/internvl/InternVL2-8B'
# Data
image_folder = './data/DiagrammaticReasoning/'
data_file = './data/DiagrammaticReasoning/train.json'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 8192
# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 1
dataloader_num_workers = 4
max_epochs = 1
optim_type = AdamW
# official 1024 -> 4e-5
# lr = 1e-6
lr = 4e-5
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1 # grad clip
warmup_ratio = 0.05
# Save
save_steps = 1000
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=path,
trust_remote_code=True,
padding_side='right')
extra_image_processor = dict(
type=DirectResize,
target_length=1024,
)
#######################################################################
# PART 2 Model & Tokenizer & Image Processor #
#######################################################################
model = dict(
dict(
type=InternVL_vlm,
model_path=path,
freeze_llm=False,
freeze_visual_encoder=True,
),
)
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
################## image chat
llava_vqa_dataset = dict(
type=LLaVADataset,
tokenizer=tokenizer,
data_path=data_file,
prompt_template=prompt_template,
special_tokens=None,
image_folder=image_folder,
)
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=llava_vqa_dataset,
sampler=dict(
type=LengthGroupedSampler,
length_property='modality_length',
per_device_batch_size=batch_size * accumulative_counts),
collate_fn=dict(type=internvl_collate_fn)
)
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='bfloat16'
)
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
save_optimizer=False,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
# set log processor
log_processor = dict(by_epoch=False)
|