File size: 101,299 Bytes
b7460af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 |
/*
* Copyright 1993-2022 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#if !defined(__CUDA_FP16_HPP__)
#define __CUDA_FP16_HPP__
#if !defined(__CUDA_FP16_H__)
#error "Do not include this file directly. Instead, include cuda_fp16.h."
#endif
#if !defined(_MSC_VER) && __cplusplus >= 201103L
# define __CPP_VERSION_AT_LEAST_11_FP16
#elif _MSC_FULL_VER >= 190024210 && _MSVC_LANG >= 201103L
# define __CPP_VERSION_AT_LEAST_11_FP16
#endif
// implicitly provided by NVRTC
#if !defined(__CUDACC_RTC__)
#include <nv/target>
#endif /* !defined(__CUDACC_RTC__) */
#if !defined(IF_DEVICE_OR_CUDACC)
#if defined(__CUDACC__)
#define IF_DEVICE_OR_CUDACC(d, c, f) NV_IF_ELSE_TARGET(NV_IS_DEVICE, d, c)
#else
#define IF_DEVICE_OR_CUDACC(d, c, f) NV_IF_ELSE_TARGET(NV_IS_DEVICE, d, f)
#endif
#endif
/* C++11 header for std::move.
* In RTC mode, std::move is provided implicitly; don't include the header
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP16) && !defined(__CUDACC_RTC__)
#include <utility>
#endif /* __cplusplus >= 201103L && !defined(__CUDACC_RTC__) */
/* C++ header for std::memcpy (used for type punning in host-side implementations).
* When compiling as a CUDA source file memcpy is provided implicitly.
* !defined(__CUDACC__) implies !defined(__CUDACC_RTC__).
*/
#if defined(__cplusplus) && !defined(__CUDACC__)
#include <cstring>
#endif /* defined(__cplusplus) && !defined(__CUDACC__) */
/* Set up function decorations */
#if defined(__CUDACC__) || defined(_NVHPC_CUDA)
#define __CUDA_FP16_DECL__ static __device__ __inline__
#define __CUDA_HOSTDEVICE_FP16_DECL__ static __host__ __device__ __inline__
#define __VECTOR_FUNCTIONS_DECL__ static __inline__ __host__ __device__
#define __CUDA_HOSTDEVICE__ __host__ __device__
#else /* !defined(__CUDACC__) */
#if defined(__GNUC__)
#define __CUDA_HOSTDEVICE_FP16_DECL__ static __attribute__ ((unused))
#else
#define __CUDA_HOSTDEVICE_FP16_DECL__ static
#endif /* defined(__GNUC__) */
#define __CUDA_HOSTDEVICE__
#endif /* defined(__CUDACC_) */
/* Set up structure-alignment attribute */
#if defined(__CUDACC__)
#define __CUDA_ALIGN__(align) __align__(align)
#else
/* Define alignment macro based on compiler type (cannot assume C11 "_Alignas" is available) */
#if __cplusplus >= 201103L
#define __CUDA_ALIGN__(n) alignas(n) /* C++11 kindly gives us a keyword for this */
#else /* !defined(__CPP_VERSION_AT_LEAST_11_FP16)*/
#if defined(__GNUC__)
#define __CUDA_ALIGN__(n) __attribute__ ((aligned(n)))
#elif defined(_MSC_VER)
#define __CUDA_ALIGN__(n) __declspec(align(n))
#else
#define __CUDA_ALIGN__(n)
#endif /* defined(__GNUC__) */
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
#endif /* defined(__CUDACC__) */
/* Macros to allow half & half2 to be used by inline assembly */
#define __HALF_TO_US(var) *(reinterpret_cast<unsigned short *>(&(var)))
#define __HALF_TO_CUS(var) *(reinterpret_cast<const unsigned short *>(&(var)))
#define __HALF2_TO_UI(var) *(reinterpret_cast<unsigned int *>(&(var)))
#define __HALF2_TO_CUI(var) *(reinterpret_cast<const unsigned int *>(&(var)))
/* Macros for half & half2 binary arithmetic */
#define __BINARY_OP_HALF_MACRO(name) /* do */ {\
__half val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16 %0,%1,%2;\n}" \
:"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)),"h"(__HALF_TO_CUS(b))); \
return val; \
} /* while(0) */
#define __BINARY_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
return val; \
} /* while(0) */
#define __TERNARY_OP_HALF_MACRO(name) /* do */ {\
__half val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16 %0,%1,%2,%3;\n}" \
:"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)),"h"(__HALF_TO_CUS(b)),"h"(__HALF_TO_CUS(c))); \
return val; \
} /* while(0) */
#define __TERNARY_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
asm( "{" __CUDA_FP16_STRINGIFY(name) ".f16x2 %0,%1,%2,%3;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b)),"r"(__HALF2_TO_CUI(c))); \
return val; \
} /* while(0) */
/**
* Types which allow static initialization of "half" and "half2" until
* these become an actual builtin. Note this initialization is as a
* bitfield representation of "half", and not a conversion from short->half.
* Such a representation will be deprecated in a future version of CUDA.
* (Note these are visible to non-nvcc compilers, including C-only compilation)
*/
typedef struct __CUDA_ALIGN__(2) {
unsigned short x;
} __half_raw;
typedef struct __CUDA_ALIGN__(4) {
unsigned short x;
unsigned short y;
} __half2_raw;
/* All other definitions in this file are only visible to C++ compilers */
#if defined(__cplusplus)
/* Hide GCC member initialization list warnings because of host/device in-function init requirement */
#if defined(__GNUC__)
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Weffc++"
#endif /* __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) */
#endif /* defined(__GNUC__) */
/* class' : multiple assignment operators specified
The class has multiple assignment operators of a single type. This warning is informational */
#if defined(_MSC_VER) && _MSC_VER >= 1500
#pragma warning( push )
#pragma warning( disable:4522 )
#endif /* defined(__GNUC__) */
struct __CUDA_ALIGN__(2) __half {
protected:
unsigned short __x;
public:
#if defined(__CPP_VERSION_AT_LEAST_11_FP16)
__half() = default;
#else
__CUDA_HOSTDEVICE__ __half() { }
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
/* Convert to/from __half_raw */
__CUDA_HOSTDEVICE__ __half(const __half_raw &hr) : __x(hr.x) { }
__CUDA_HOSTDEVICE__ __half &operator=(const __half_raw &hr) { __x = hr.x; return *this; }
__CUDA_HOSTDEVICE__ volatile __half &operator=(const __half_raw &hr) volatile { __x = hr.x; return *this; }
__CUDA_HOSTDEVICE__ volatile __half &operator=(const volatile __half_raw &hr) volatile { __x = hr.x; return *this; }
__CUDA_HOSTDEVICE__ operator __half_raw() const { __half_raw ret; ret.x = __x; return ret; }
__CUDA_HOSTDEVICE__ operator __half_raw() const volatile { __half_raw ret; ret.x = __x; return ret; }
#if !defined(__CUDA_NO_HALF_CONVERSIONS__)
/* Construct from float/double */
__CUDA_HOSTDEVICE__ __half(const float f) { __x = __float2half(f).__x; }
__CUDA_HOSTDEVICE__ __half(const double f) { __x = __double2half(f).__x; }
__CUDA_HOSTDEVICE__ operator float() const { return __half2float(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const float f) { __x = __float2half(f).__x; return *this; }
/* We omit "cast to double" operator, so as to not be ambiguous about up-cast */
__CUDA_HOSTDEVICE__ __half &operator=(const double f) { __x = __double2half(f).__x; return *this; }
/* Member functions only available to nvcc compilation so far */
#if defined(__CUDACC__)
/* Allow automatic construction from types supported natively in hardware */
/* Note we do avoid constructor init-list because of special host/device compilation rules */
__CUDA_HOSTDEVICE__ __half(const short val) { __x = __short2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const unsigned short val) { __x = __ushort2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const int val) { __x = __int2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const unsigned int val) { __x = __uint2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const long long val) { __x = __ll2half_rn(val).__x; }
__CUDA_HOSTDEVICE__ __half(const unsigned long long val) { __x = __ull2half_rn(val).__x; }
/* Allow automatic casts to supported builtin types, matching all that are permitted with float */
__CUDA_HOSTDEVICE__ operator short() const { return __half2short_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const short val) { __x = __short2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator unsigned short() const { return __half2ushort_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const unsigned short val) { __x = __ushort2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator int() const { return __half2int_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const int val) { __x = __int2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator unsigned int() const { return __half2uint_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const unsigned int val) { __x = __uint2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator long long() const { return __half2ll_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const long long val) { __x = __ll2half_rn(val).__x; return *this; }
__CUDA_HOSTDEVICE__ operator unsigned long long() const { return __half2ull_rz(*this); }
__CUDA_HOSTDEVICE__ __half &operator=(const unsigned long long val) { __x = __ull2half_rn(val).__x; return *this; }
/* Boolean conversion - note both 0 and -0 must return false */
__CUDA_HOSTDEVICE__ operator bool() const { return (__x & 0x7FFFU) != 0U; }
#endif /* defined(__CUDACC__) */
#endif /* !defined(__CUDA_NO_HALF_CONVERSIONS__) */
};
/* Global-space operator functions are only available to nvcc compilation */
#if defined(__CUDACC__)
/* Arithmetic FP16 operations only supported on arch >= 5.3 */
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)
#if !defined(__CUDA_NO_HALF_OPERATORS__)
/* Some basic arithmetic operations expected of a builtin */
__device__ __forceinline__ __half operator+(const __half &lh, const __half &rh) { return __hadd(lh, rh); }
__device__ __forceinline__ __half operator-(const __half &lh, const __half &rh) { return __hsub(lh, rh); }
__device__ __forceinline__ __half operator*(const __half &lh, const __half &rh) { return __hmul(lh, rh); }
__device__ __forceinline__ __half operator/(const __half &lh, const __half &rh) { return __hdiv(lh, rh); }
__device__ __forceinline__ __half &operator+=(__half &lh, const __half &rh) { lh = __hadd(lh, rh); return lh; }
__device__ __forceinline__ __half &operator-=(__half &lh, const __half &rh) { lh = __hsub(lh, rh); return lh; }
__device__ __forceinline__ __half &operator*=(__half &lh, const __half &rh) { lh = __hmul(lh, rh); return lh; }
__device__ __forceinline__ __half &operator/=(__half &lh, const __half &rh) { lh = __hdiv(lh, rh); return lh; }
/* Note for increment and decrement we use the raw value 0x3C00U equating to half(1.0F), to avoid the extra conversion */
__device__ __forceinline__ __half &operator++(__half &h) { __half_raw one; one.x = 0x3C00U; h += one; return h; }
__device__ __forceinline__ __half &operator--(__half &h) { __half_raw one; one.x = 0x3C00U; h -= one; return h; }
__device__ __forceinline__ __half operator++(__half &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half ret = h;
__half_raw one;
one.x = 0x3C00U;
h += one;
return ret;
}
__device__ __forceinline__ __half operator--(__half &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half ret = h;
__half_raw one;
one.x = 0x3C00U;
h -= one;
return ret;
}
/* Unary plus and inverse operators */
__device__ __forceinline__ __half operator+(const __half &h) { return h; }
__device__ __forceinline__ __half operator-(const __half &h) { return __hneg(h); }
/* Some basic comparison operations to make it look like a builtin */
__device__ __forceinline__ bool operator==(const __half &lh, const __half &rh) { return __heq(lh, rh); }
__device__ __forceinline__ bool operator!=(const __half &lh, const __half &rh) { return __hneu(lh, rh); }
__device__ __forceinline__ bool operator> (const __half &lh, const __half &rh) { return __hgt(lh, rh); }
__device__ __forceinline__ bool operator< (const __half &lh, const __half &rh) { return __hlt(lh, rh); }
__device__ __forceinline__ bool operator>=(const __half &lh, const __half &rh) { return __hge(lh, rh); }
__device__ __forceinline__ bool operator<=(const __half &lh, const __half &rh) { return __hle(lh, rh); }
#endif /* !defined(__CUDA_NO_HALF_OPERATORS__) */
#endif /* !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA) */
#endif /* defined(__CUDACC__) */
/* __half2 is visible to non-nvcc host compilers */
struct __CUDA_ALIGN__(4) __half2 {
__half x;
__half y;
// All construct/copy/assign/move
public:
#if defined(__CPP_VERSION_AT_LEAST_11_FP16)
__half2() = default;
__CUDA_HOSTDEVICE__ __half2(const __half2 &&src) { __HALF2_TO_UI(*this) = std::move(__HALF2_TO_CUI(src)); }
__CUDA_HOSTDEVICE__ __half2 &operator=(const __half2 &&src) { __HALF2_TO_UI(*this) = std::move(__HALF2_TO_CUI(src)); return *this; }
#else
__CUDA_HOSTDEVICE__ __half2() { }
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
__CUDA_HOSTDEVICE__ __half2(const __half &a, const __half &b) : x(a), y(b) { }
__CUDA_HOSTDEVICE__ __half2(const __half2 &src) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(src); }
__CUDA_HOSTDEVICE__ __half2 &operator=(const __half2 &src) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(src); return *this; }
/* Convert to/from __half2_raw */
__CUDA_HOSTDEVICE__ __half2(const __half2_raw &h2r ) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(h2r); }
__CUDA_HOSTDEVICE__ __half2 &operator=(const __half2_raw &h2r) { __HALF2_TO_UI(*this) = __HALF2_TO_CUI(h2r); return *this; }
__CUDA_HOSTDEVICE__ operator __half2_raw() const { __half2_raw ret; ret.x = 0U; ret.y = 0U; __HALF2_TO_UI(ret) = __HALF2_TO_CUI(*this); return ret; }
};
/* Global-space operator functions are only available to nvcc compilation */
#if defined(__CUDACC__)
/* Arithmetic FP16x2 operations only supported on arch >= 5.3 */
#if (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)) && !defined(__CUDA_NO_HALF2_OPERATORS__)
__device__ __forceinline__ __half2 operator+(const __half2 &lh, const __half2 &rh) { return __hadd2(lh, rh); }
__device__ __forceinline__ __half2 operator-(const __half2 &lh, const __half2 &rh) { return __hsub2(lh, rh); }
__device__ __forceinline__ __half2 operator*(const __half2 &lh, const __half2 &rh) { return __hmul2(lh, rh); }
__device__ __forceinline__ __half2 operator/(const __half2 &lh, const __half2 &rh) { return __h2div(lh, rh); }
__device__ __forceinline__ __half2& operator+=(__half2 &lh, const __half2 &rh) { lh = __hadd2(lh, rh); return lh; }
__device__ __forceinline__ __half2& operator-=(__half2 &lh, const __half2 &rh) { lh = __hsub2(lh, rh); return lh; }
__device__ __forceinline__ __half2& operator*=(__half2 &lh, const __half2 &rh) { lh = __hmul2(lh, rh); return lh; }
__device__ __forceinline__ __half2& operator/=(__half2 &lh, const __half2 &rh) { lh = __h2div(lh, rh); return lh; }
__device__ __forceinline__ __half2 &operator++(__half2 &h) { __half2_raw one; one.x = 0x3C00U; one.y = 0x3C00U; h = __hadd2(h, one); return h; }
__device__ __forceinline__ __half2 &operator--(__half2 &h) { __half2_raw one; one.x = 0x3C00U; one.y = 0x3C00U; h = __hsub2(h, one); return h; }
__device__ __forceinline__ __half2 operator++(__half2 &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half2 ret = h;
__half2_raw one;
one.x = 0x3C00U;
one.y = 0x3C00U;
h = __hadd2(h, one);
return ret;
}
__device__ __forceinline__ __half2 operator--(__half2 &h, const int ignored)
{
// ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators.
static_cast<void>(ignored);
const __half2 ret = h;
__half2_raw one;
one.x = 0x3C00U;
one.y = 0x3C00U;
h = __hsub2(h, one);
return ret;
}
__device__ __forceinline__ __half2 operator+(const __half2 &h) { return h; }
__device__ __forceinline__ __half2 operator-(const __half2 &h) { return __hneg2(h); }
__device__ __forceinline__ bool operator==(const __half2 &lh, const __half2 &rh) { return __hbeq2(lh, rh); }
__device__ __forceinline__ bool operator!=(const __half2 &lh, const __half2 &rh) { return __hbneu2(lh, rh); }
__device__ __forceinline__ bool operator>(const __half2 &lh, const __half2 &rh) { return __hbgt2(lh, rh); }
__device__ __forceinline__ bool operator<(const __half2 &lh, const __half2 &rh) { return __hblt2(lh, rh); }
__device__ __forceinline__ bool operator>=(const __half2 &lh, const __half2 &rh) { return __hbge2(lh, rh); }
__device__ __forceinline__ bool operator<=(const __half2 &lh, const __half2 &rh) { return __hble2(lh, rh); }
#endif /* (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)) && !defined(__CUDA_NO_HALF2_OPERATORS__) */
#endif /* defined(__CUDACC__) */
/* Restore warning for multiple assignment operators */
#if defined(_MSC_VER) && _MSC_VER >= 1500
#pragma warning( pop )
#endif /* defined(_MSC_VER) && _MSC_VER >= 1500 */
/* Restore -Weffc++ warnings from here on */
#if defined(__GNUC__)
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic pop
#endif /* __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) */
#endif /* defined(__GNUC__) */
#undef __CUDA_HOSTDEVICE__
#undef __CUDA_ALIGN__
#ifndef __CUDACC_RTC__ /* no host functions in NVRTC mode */
static inline unsigned short __internal_float2half(const float f, unsigned int &sign, unsigned int &remainder)
{
unsigned int x;
unsigned int u;
unsigned int result;
#if defined(__CUDACC__)
(void)memcpy(&x, &f, sizeof(f));
#else
(void)std::memcpy(&x, &f, sizeof(f));
#endif
u = (x & 0x7fffffffU);
sign = ((x >> 16U) & 0x8000U);
// NaN/+Inf/-Inf
if (u >= 0x7f800000U) {
remainder = 0U;
result = ((u == 0x7f800000U) ? (sign | 0x7c00U) : 0x7fffU);
} else if (u > 0x477fefffU) { // Overflows
remainder = 0x80000000U;
result = (sign | 0x7bffU);
} else if (u >= 0x38800000U) { // Normal numbers
remainder = u << 19U;
u -= 0x38000000U;
result = (sign | (u >> 13U));
} else if (u < 0x33000001U) { // +0/-0
remainder = u;
result = sign;
} else { // Denormal numbers
const unsigned int exponent = u >> 23U;
const unsigned int shift = 0x7eU - exponent;
unsigned int mantissa = (u & 0x7fffffU);
mantissa |= 0x800000U;
remainder = mantissa << (32U - shift);
result = (sign | (mantissa >> shift));
result &= 0x0000FFFFU;
}
return static_cast<unsigned short>(result);
}
#endif /* #if !defined(__CUDACC_RTC__) */
__CUDA_HOSTDEVICE_FP16_DECL__ __half __double2half(const double a)
{
IF_DEVICE_OR_CUDACC(
__half val;
asm("{ cvt.rn.f16.f64 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "d"(a));
return val;
,
__half result;
// Perform rounding to 11 bits of precision, convert value
// to float and call existing float to half conversion.
// By pre-rounding to 11 bits we avoid additional rounding
// in float to half conversion.
unsigned long long int absa;
unsigned long long int ua;
(void)memcpy(&ua, &a, sizeof(a));
absa = (ua & 0x7fffffffffffffffULL);
if ((absa >= 0x40f0000000000000ULL) || (absa <= 0x3e60000000000000ULL))
{
// |a| >= 2^16 or NaN or |a| <= 2^(-25)
// double-rounding is not a problem
result = __float2half(static_cast<float>(a));
}
else
{
// here 2^(-25) < |a| < 2^16
// prepare shifter value such that a + shifter
// done in double precision performs round-to-nearest-even
// and (a + shifter) - shifter results in a rounded to
// 11 bits of precision. Shifter needs to have exponent of
// a plus 53 - 11 = 42 and a leading bit in mantissa to guard
// against negative values.
// So need to have |a| capped to avoid overflow in exponent.
// For inputs that are smaller than half precision minnorm
// we prepare fixed shifter exponent.
unsigned long long shifterBits;
if (absa >= 0x3f10000000000000ULL)
{ // Here if |a| >= 2^(-14)
// add 42 to exponent bits
shifterBits = (ua & 0x7ff0000000000000ULL) + 0x02A0000000000000ULL;
}
else
{ // 2^(-25) < |a| < 2^(-14), potentially results in denormal
// set exponent bits to 42 - 14 + bias
shifterBits = 0x41B0000000000000ULL;
}
// set leading mantissa bit to protect against negative inputs
shifterBits |= 0x0008000000000000ULL;
double shifter;
(void)memcpy(&shifter, &shifterBits, sizeof(shifterBits));
double aShiftRound = a + shifter;
// Prevent the compiler from optimizing away a + shifter - shifter
// by doing intermediate memcopy and harmless bitwize operation
unsigned long long int aShiftRoundBits;
(void)memcpy(&aShiftRoundBits, &aShiftRound, sizeof(aShiftRound));
// the value is positive, so this operation doesn't change anything
aShiftRoundBits &= 0x7fffffffffffffffULL;
(void)memcpy(&aShiftRound, &aShiftRoundBits, sizeof(aShiftRound));
result = __float2half(static_cast<float>(aShiftRound - shifter));
}
return result;
,
__half result;
/*
// Perform rounding to 11 bits of precision, convert value
// to float and call existing float to half conversion.
// By pre-rounding to 11 bits we avoid additional rounding
// in float to half conversion.
*/
unsigned long long int absa;
unsigned long long int ua;
(void)std::memcpy(&ua, &a, sizeof(a));
absa = (ua & 0x7fffffffffffffffULL);
if ((absa >= 0x40f0000000000000ULL) || (absa <= 0x3e60000000000000ULL))
{
/*
// |a| >= 2^16 or NaN or |a| <= 2^(-25)
// double-rounding is not a problem
*/
result = __float2half(static_cast<float>(a));
}
else
{
/*
// here 2^(-25) < |a| < 2^16
// prepare shifter value such that a + shifter
// done in double precision performs round-to-nearest-even
// and (a + shifter) - shifter results in a rounded to
// 11 bits of precision. Shifter needs to have exponent of
// a plus 53 - 11 = 42 and a leading bit in mantissa to guard
// against negative values.
// So need to have |a| capped to avoid overflow in exponent.
// For inputs that are smaller than half precision minnorm
// we prepare fixed shifter exponent.
*/
unsigned long long shifterBits;
if (absa >= 0x3f10000000000000ULL)
{
/*
// Here if |a| >= 2^(-14)
// add 42 to exponent bits
*/
shifterBits = (ua & 0x7ff0000000000000ULL) + 0x02A0000000000000ULL;
}
else
{
/*
// 2^(-25) < |a| < 2^(-14), potentially results in denormal
// set exponent bits to 42 - 14 + bias
*/
shifterBits = 0x41B0000000000000ULL;
}
// set leading mantissa bit to protect against negative inputs
shifterBits |= 0x0008000000000000ULL;
double shifter;
(void)std::memcpy(&shifter, &shifterBits, sizeof(shifterBits));
double aShiftRound = a + shifter;
/*
// Prevent the compiler from optimizing away a + shifter - shifter
// by doing intermediate memcopy and harmless bitwize operation
*/
unsigned long long int aShiftRoundBits;
(void)std::memcpy(&aShiftRoundBits, &aShiftRound, sizeof(aShiftRound));
// the value is positive, so this operation doesn't change anything
aShiftRoundBits &= 0x7fffffffffffffffULL;
(void)std::memcpy(&aShiftRound, &aShiftRoundBits, sizeof(aShiftRound));
result = __float2half(static_cast<float>(aShiftRound - shifter));
}
return result;
)
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rn.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder > 0x80000000U) || ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_rn(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rn.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder > 0x80000000U) || ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_rz(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rz.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_rd(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rm.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder != 0U) && (sign != 0U)) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __float2half_ru(const float a)
{
__half val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.rp.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(a));
,
__half_raw r;
unsigned int sign = 0U;
unsigned int remainder = 0U;
r.x = __internal_float2half(a, sign, remainder);
if ((remainder != 0U) && (sign == 0U)) {
r.x++;
}
val = r;
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half2 __float2half2_rn(const float a)
{
__half2 val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low;\n"
" cvt.rn.f16.f32 low, %1;\n"
" mov.b32 %0, {low,low};}\n" : "=r"(__HALF2_TO_UI(val)) : "f"(a));
,
val = __half2(__float2half_rn(a), __float2half_rn(a));
)
return val;
}
#if defined(__CUDA_ARCH__) || defined(_NVHPC_CUDA)
__CUDA_FP16_DECL__ __half2 __internal_device_float2_to_half2_rn(const float a, const float b) {
__half2 val;
NV_IF_ELSE_TARGET(NV_PROVIDES_SM_80,
asm("{ cvt.rn.f16x2.f32 %0, %2, %1; }\n"
: "=r"(__HALF2_TO_UI(val)) : "f"(a), "f"(b));
,
asm("{.reg .f16 low,high;\n"
" cvt.rn.f16.f32 low, %1;\n"
" cvt.rn.f16.f32 high, %2;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "f"(a), "f"(b));
)
return val;
}
#endif
__CUDA_HOSTDEVICE_FP16_DECL__ __half2 __floats2half2_rn(const float a, const float b)
{
__half2 val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
val = __internal_device_float2_to_half2_rn(a,b);
,
val = __half2(__float2half_rn(a), __float2half_rn(b));
)
return val;
}
#ifndef __CUDACC_RTC__ /* no host functions in NVRTC mode */
static inline float __internal_half2float(const unsigned short h)
{
unsigned int sign = ((static_cast<unsigned int>(h) >> 15U) & 1U);
unsigned int exponent = ((static_cast<unsigned int>(h) >> 10U) & 0x1fU);
unsigned int mantissa = ((static_cast<unsigned int>(h) & 0x3ffU) << 13U);
float f;
if (exponent == 0x1fU) { /* NaN or Inf */
/* discard sign of a NaN */
sign = ((mantissa != 0U) ? (sign >> 1U) : sign);
mantissa = ((mantissa != 0U) ? 0x7fffffU : 0U);
exponent = 0xffU;
} else if (exponent == 0U) { /* Denorm or Zero */
if (mantissa != 0U) {
unsigned int msb;
exponent = 0x71U;
do {
msb = (mantissa & 0x400000U);
mantissa <<= 1U; /* normalize */
--exponent;
} while (msb == 0U);
mantissa &= 0x7fffffU; /* 1.mantissa is implicit */
}
} else {
exponent += 0x70U;
}
const unsigned int u = ((sign << 31U) | (exponent << 23U) | mantissa);
#if defined(__CUDACC__)
(void)memcpy(&f, &u, sizeof(u));
#else
(void)std::memcpy(&f, &u, sizeof(u));
#endif
return f;
}
#endif /* !defined(__CUDACC_RTC__) */
__CUDA_HOSTDEVICE_FP16_DECL__ float __half2float(const __half a)
{
float val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{ cvt.f32.f16 %0, %1;}\n" : "=f"(val) : "h"(__HALF_TO_CUS(a)));
,
val = __internal_half2float(static_cast<__half_raw>(a).x);
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ float __low2float(const __half2 a)
{
float val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, low;}\n" : "=f"(val) : "r"(__HALF2_TO_CUI(a)));
,
val = __internal_half2float(static_cast<__half2_raw>(a).x);
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ float __high2float(const __half2 a)
{
float val;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, high;}\n" : "=f"(val) : "r"(__HALF2_TO_CUI(a)));
,
val = __internal_half2float(static_cast<__half2_raw>(a).y);
)
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ short int __half2short_rz(const __half h)
{
short int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const short int max_val = (short int)0x7fffU;
const short int min_val = (short int)0x8000U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<short int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ unsigned short int __half2ushort_rz(const __half h)
{
unsigned short int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const unsigned short int max_val = 0xffffU;
const unsigned short int min_val = 0U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0U;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<unsigned short int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ int __half2int_rz(const __half h)
{
int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const int max_val = (int)0x7fffffffU;
const int min_val = (int)0x80000000U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ unsigned int __half2uint_rz(const __half h)
{
unsigned int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const unsigned int max_val = 0xffffffffU;
const unsigned int min_val = 0U;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0U;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<unsigned int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ long long int __half2ll_rz(const __half h)
{
long long int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const long long int max_val = (long long int)0x7fffffffffffffffULL;
const long long int min_val = (long long int)0x8000000000000000ULL;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = min_val;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<long long int>(f);
}
)
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ unsigned long long int __half2ull_rz(const __half h)
{
unsigned long long int i;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rzi.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
,
const float f = __half2float(h);
const unsigned long long int max_val = 0xffffffffffffffffULL;
const unsigned long long int min_val = 0ULL;
const unsigned short bits = static_cast<unsigned short>(static_cast<__half_raw>(h).x << 1U);
// saturation fixup
if (bits > (unsigned short)0xF800U) {
// NaN
i = 0x8000000000000000ULL;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value, conversion is well-defined
i = static_cast<unsigned long long int>(f);
}
)
return i;
}
/* Intrinsic functions only available to nvcc compilers */
#if defined(__CUDACC__)
/* CUDA vector-types compatible vector creation function (note returns __half2, not half2) */
__VECTOR_FUNCTIONS_DECL__ __half2 make_half2(const __half x, const __half y)
{
__half2 t; t.x = x; t.y = y; return t;
}
#undef __VECTOR_FUNCTIONS_DECL__
/* Definitions of intrinsics */
__CUDA_HOSTDEVICE_FP16_DECL__ __half2 __float22half2_rn(const float2 a)
{
const __half2 val = __floats2half2_rn(a.x, a.y);
return val;
}
__CUDA_HOSTDEVICE_FP16_DECL__ float2 __half22float2(const __half2 a)
{
float hi_float;
float lo_float;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, low;}\n" : "=f"(lo_float) : "r"(__HALF2_TO_CUI(a)));
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high},%1;\n"
" cvt.f32.f16 %0, high;}\n" : "=f"(hi_float) : "r"(__HALF2_TO_CUI(a)));
,
lo_float = __internal_half2float(((__half2_raw)a).x);
hi_float = __internal_half2float(((__half2_raw)a).y);
)
return make_float2(lo_float, hi_float);
}
__CUDA_FP16_DECL__ int __half2int_rn(const __half h)
{
int i;
asm("cvt.rni.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ int __half2int_rd(const __half h)
{
int i;
asm("cvt.rmi.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ int __half2int_ru(const __half h)
{
int i;
asm("cvt.rpi.s32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __int2half_rn(const int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __int2half_rz(const int i)
{
__half h;
asm("cvt.rz.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __int2half_rd(const int i)
{
__half h;
asm("cvt.rm.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __int2half_ru(const int i)
{
__half h;
asm("cvt.rp.f16.s32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ short int __half2short_rn(const __half h)
{
short int i;
asm("cvt.rni.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ short int __half2short_rd(const __half h)
{
short int i;
asm("cvt.rmi.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ short int __half2short_ru(const __half h)
{
short int i;
asm("cvt.rpi.s16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __short2half_rn(const short int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
,
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __short2half_rz(const short int i)
{
__half h;
asm("cvt.rz.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __short2half_rd(const short int i)
{
__half h;
asm("cvt.rm.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __short2half_ru(const short int i)
{
__half h;
asm("cvt.rp.f16.s16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ unsigned int __half2uint_rn(const __half h)
{
unsigned int i;
asm("cvt.rni.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned int __half2uint_rd(const __half h)
{
unsigned int i;
asm("cvt.rmi.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned int __half2uint_ru(const __half h)
{
unsigned int i;
asm("cvt.rpi.u32.f16 %0, %1;" : "=r"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __uint2half_rn(const unsigned int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __uint2half_rz(const unsigned int i)
{
__half h;
asm("cvt.rz.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __uint2half_rd(const unsigned int i)
{
__half h;
asm("cvt.rm.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ __half __uint2half_ru(const unsigned int i)
{
__half h;
asm("cvt.rp.f16.u32 %0, %1;" : "=h"(__HALF_TO_US(h)) : "r"(i));
return h;
}
__CUDA_FP16_DECL__ unsigned short int __half2ushort_rn(const __half h)
{
unsigned short int i;
asm("cvt.rni.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned short int __half2ushort_rd(const __half h)
{
unsigned short int i;
asm("cvt.rmi.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned short int __half2ushort_ru(const __half h)
{
unsigned short int i;
asm("cvt.rpi.u16.f16 %0, %1;" : "=h"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __ushort2half_rn(const unsigned short int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
,
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __ushort2half_rz(const unsigned short int i)
{
__half h;
asm("cvt.rz.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ushort2half_rd(const unsigned short int i)
{
__half h;
asm("cvt.rm.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ushort2half_ru(const unsigned short int i)
{
__half h;
asm("cvt.rp.f16.u16 %0, %1;" : "=h"(__HALF_TO_US(h)) : "h"(i));
return h;
}
__CUDA_FP16_DECL__ unsigned long long int __half2ull_rn(const __half h)
{
unsigned long long int i;
asm("cvt.rni.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned long long int __half2ull_rd(const __half h)
{
unsigned long long int i;
asm("cvt.rmi.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ unsigned long long int __half2ull_ru(const __half h)
{
unsigned long long int i;
asm("cvt.rpi.u64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __ull2half_rn(const unsigned long long int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __ull2half_rz(const unsigned long long int i)
{
__half h;
asm("cvt.rz.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ull2half_rd(const unsigned long long int i)
{
__half h;
asm("cvt.rm.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ull2half_ru(const unsigned long long int i)
{
__half h;
asm("cvt.rp.f16.u64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ long long int __half2ll_rn(const __half h)
{
long long int i;
asm("cvt.rni.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ long long int __half2ll_rd(const __half h)
{
long long int i;
asm("cvt.rmi.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_FP16_DECL__ long long int __half2ll_ru(const __half h)
{
long long int i;
asm("cvt.rpi.s64.f16 %0, %1;" : "=l"(i) : "h"(__HALF_TO_CUS(h)));
return i;
}
__CUDA_HOSTDEVICE_FP16_DECL__ __half __ll2half_rn(const long long int i)
{
__half h;
NV_IF_ELSE_TARGET(NV_IS_DEVICE,
asm("cvt.rn.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
,
// double-rounding is not a problem here: if integer
// has more than 24 bits, it is already too large to
// be represented in half precision, and result will
// be infinity.
const float f = static_cast<float>(i);
h = __float2half_rn(f);
)
return h;
}
__CUDA_FP16_DECL__ __half __ll2half_rz(const long long int i)
{
__half h;
asm("cvt.rz.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ll2half_rd(const long long int i)
{
__half h;
asm("cvt.rm.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half __ll2half_ru(const long long int i)
{
__half h;
asm("cvt.rp.f16.s64 %0, %1;" : "=h"(__HALF_TO_US(h)) : "l"(i));
return h;
}
__CUDA_FP16_DECL__ __half htrunc(const __half h)
{
__half r;
asm("cvt.rzi.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half hceil(const __half h)
{
__half r;
asm("cvt.rpi.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half hfloor(const __half h)
{
__half r;
asm("cvt.rmi.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half hrint(const __half h)
{
__half r;
asm("cvt.rni.f16.f16 %0, %1;" : "=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(h)));
return r;
}
__CUDA_FP16_DECL__ __half2 h2trunc(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rzi.f16.f16 low, low;\n"
" cvt.rzi.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2ceil(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rpi.f16.f16 low, low;\n"
" cvt.rpi.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2floor(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rmi.f16.f16 low, low;\n"
" cvt.rmi.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2rint(const __half2 h)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" cvt.rni.f16.f16 low, low;\n"
" cvt.rni.f16.f16 high, high;\n"
" mov.b32 %0, {low,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(h)));
return val;
}
__CUDA_FP16_DECL__ __half2 __lows2half2(const __half2 a, const __half2 b)
{
__half2 val;
asm("{.reg .f16 alow,ahigh,blow,bhigh;\n"
" mov.b32 {alow,ahigh}, %1;\n"
" mov.b32 {blow,bhigh}, %2;\n"
" mov.b32 %0, {alow,blow};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)), "r"(__HALF2_TO_CUI(b)));
return val;
}
__CUDA_FP16_DECL__ __half2 __highs2half2(const __half2 a, const __half2 b)
{
__half2 val;
asm("{.reg .f16 alow,ahigh,blow,bhigh;\n"
" mov.b32 {alow,ahigh}, %1;\n"
" mov.b32 {blow,bhigh}, %2;\n"
" mov.b32 %0, {ahigh,bhigh};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)), "r"(__HALF2_TO_CUI(b)));
return val;
}
__CUDA_FP16_DECL__ __half __low2half(const __half2 a)
{
__half ret;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b16 %0, low;}" : "=h"(__HALF_TO_US(ret)) : "r"(__HALF2_TO_CUI(a)));
return ret;
}
__CUDA_FP16_DECL__ int __hisinf(const __half a)
{
int retval;
if (__HALF_TO_CUS(a) == 0xFC00U) {
retval = -1;
} else if (__HALF_TO_CUS(a) == 0x7C00U) {
retval = 1;
} else {
retval = 0;
}
return retval;
}
__CUDA_FP16_DECL__ __half2 __low2half2(const __half2 a)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b32 %0, {low,low};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 __high2half2(const __half2 a)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b32 %0, {high,high};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half __high2half(const __half2 a)
{
__half ret;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b16 %0, high;}" : "=h"(__HALF_TO_US(ret)) : "r"(__HALF2_TO_CUI(a)));
return ret;
}
__CUDA_FP16_DECL__ __half2 __halves2half2(const __half a, const __half b)
{
__half2 val;
asm("{ mov.b32 %0, {%1,%2};}\n"
: "=r"(__HALF2_TO_UI(val)) : "h"(__HALF_TO_CUS(a)), "h"(__HALF_TO_CUS(b)));
return val;
}
__CUDA_FP16_DECL__ __half2 __half2half2(const __half a)
{
__half2 val;
asm("{ mov.b32 %0, {%1,%1};}\n"
: "=r"(__HALF2_TO_UI(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 __lowhigh2highlow(const __half2 a)
{
__half2 val;
asm("{.reg .f16 low,high;\n"
" mov.b32 {low,high}, %1;\n"
" mov.b32 %0, {high,low};}\n" : "=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ short int __half_as_short(const __half h)
{
return static_cast<short int>(__HALF_TO_CUS(h));
}
__CUDA_FP16_DECL__ unsigned short int __half_as_ushort(const __half h)
{
return __HALF_TO_CUS(h);
}
__CUDA_FP16_DECL__ __half __short_as_half(const short int i)
{
__half h;
__HALF_TO_US(h) = static_cast<unsigned short int>(i);
return h;
}
__CUDA_FP16_DECL__ __half __ushort_as_half(const unsigned short int i)
{
__half h;
__HALF_TO_US(h) = i;
return h;
}
/******************************************************************************
* __half arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half __hmax(const __half a, const __half b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF_MACRO(max)
#else
const float fa = __half2float(a);
const float fb = __half2float(b);
float fr;
asm("{max.f32 %0,%1,%2;\n}"
:"=f"(fr) : "f"(fa), "f"(fb));
const __half hr = __float2half(fr);
return hr;
#endif
}
__CUDA_FP16_DECL__ __half __hmin(const __half a, const __half b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF_MACRO(min)
#else
const float fa = __half2float(a);
const float fb = __half2float(b);
float fr;
asm("{min.f32 %0,%1,%2;\n}"
:"=f"(fr) : "f"(fa), "f"(fb));
const __half hr = __float2half(fr);
return hr;
#endif
}
/******************************************************************************
* __half2 arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half2 __hmax2(const __half2 a, const __half2 b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF2_MACRO(max)
#else
const float2 fa = __half22float2(a);
const float2 fb = __half22float2(b);
float2 fr;
asm("{max.f32 %0,%1,%2;\n}"
:"=f"(fr.x) : "f"(fa.x), "f"(fb.x));
asm("{max.f32 %0,%1,%2;\n}"
:"=f"(fr.y) : "f"(fa.y), "f"(fb.y));
const __half2 hr = __float22half2_rn(fr);
return hr;
#endif
}
__CUDA_FP16_DECL__ __half2 __hmin2(const __half2 a, const __half2 b)
{
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__BINARY_OP_HALF2_MACRO(min)
#else
const float2 fa = __half22float2(a);
const float2 fb = __half22float2(b);
float2 fr;
asm("{min.f32 %0,%1,%2;\n}"
:"=f"(fr.x) : "f"(fa.x), "f"(fb.x));
asm("{min.f32 %0,%1,%2;\n}"
:"=f"(fr.y) : "f"(fa.y), "f"(fb.y));
const __half2 hr = __float22half2_rn(fr);
return hr;
#endif
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 300) || defined(_NVHPC_CUDA)
/******************************************************************************
* __half, __half2 warp shuffle *
******************************************************************************/
#define __SHUFFLE_HALF2_MACRO(name) /* do */ {\
__half2 r; \
asm volatile ("{" __CUDA_FP16_STRINGIFY(name) " %0,%1,%2,%3;\n}" \
:"=r"(__HALF2_TO_UI(r)): "r"(__HALF2_TO_CUI(var)), "r"(delta), "r"(c)); \
return r; \
} /* while(0) */
#define __SHUFFLE_SYNC_HALF2_MACRO(name) /* do */ {\
__half2 r; \
asm volatile ("{" __CUDA_FP16_STRINGIFY(name) " %0,%1,%2,%3,%4;\n}" \
:"=r"(__HALF2_TO_UI(r)): "r"(__HALF2_TO_CUI(var)), "r"(delta), "r"(c), "r"(mask)); \
return r; \
} /* while(0) */
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700)
__CUDA_FP16_DECL__ __half2 __shfl(const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_HALF2_MACRO(shfl.idx.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_up(const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = (warp_size - static_cast<unsigned>(width)) << 8U;
__SHUFFLE_HALF2_MACRO(shfl.up.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_down(const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_HALF2_MACRO(shfl.down.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_xor(const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_HALF2_MACRO(shfl.bfly.b32)
}
#endif /* defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700) */
__CUDA_FP16_DECL__ __half2 __shfl_sync(const unsigned mask, const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.idx.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_up_sync(const unsigned mask, const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = (warp_size - static_cast<unsigned>(width)) << 8U;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.up.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_down_sync(const unsigned mask, const __half2 var, const unsigned int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.down.b32)
}
__CUDA_FP16_DECL__ __half2 __shfl_xor_sync(const unsigned mask, const __half2 var, const int delta, const int width)
{
unsigned int warp_size;
asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size));
const unsigned int c = ((warp_size - static_cast<unsigned>(width)) << 8U) | 0x1fU;
__SHUFFLE_SYNC_HALF2_MACRO(shfl.sync.bfly.b32)
}
#undef __SHUFFLE_HALF2_MACRO
#undef __SHUFFLE_SYNC_HALF2_MACRO
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700)
__CUDA_FP16_DECL__ __half __shfl(const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl(temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_up(const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_up(temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_down(const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_down(temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_xor(const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_xor(temp1, delta, width);
return __low2half(temp2);
}
#endif /* defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ < 700) */
__CUDA_FP16_DECL__ __half __shfl_sync(const unsigned mask, const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_up_sync(const unsigned mask, const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_up_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_down_sync(const unsigned mask, const __half var, const unsigned int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_down_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
__CUDA_FP16_DECL__ __half __shfl_xor_sync(const unsigned mask, const __half var, const int delta, const int width)
{
const __half2 temp1 = __halves2half2(var, var);
const __half2 temp2 = __shfl_xor_sync(mask, temp1, delta, width);
return __low2half(temp2);
}
#endif /* !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 300) || defined(_NVHPC_CUDA) */
/******************************************************************************
* __half and __half2 __ldg,__ldcg,__ldca,__ldcs *
******************************************************************************/
#if defined(__cplusplus) && (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 320) || defined(_NVHPC_CUDA))
#if (defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)
#define __LDG_PTR "l"
#else
#define __LDG_PTR "r"
#endif /*(defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)*/
__CUDA_FP16_DECL__ __half2 __ldg(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.nc.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldg(const __half *const ptr)
{
__half ret;
asm ("ld.global.nc.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldcg(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.cg.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldcg(const __half *const ptr)
{
__half ret;
asm ("ld.global.cg.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldca(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.ca.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldca(const __half *const ptr)
{
__half ret;
asm ("ld.global.ca.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldcs(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.cs.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half __ldcs(const __half *const ptr)
{
__half ret;
asm ("ld.global.cs.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr));
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldlu(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.lu.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ __half __ldlu(const __half *const ptr)
{
__half ret;
asm ("ld.global.lu.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ __half2 __ldcv(const __half2 *const ptr)
{
__half2 ret;
asm ("ld.global.cv.b32 %0, [%1];" : "=r"(__HALF2_TO_UI(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ __half __ldcv(const __half *const ptr)
{
__half ret;
asm ("ld.global.cv.b16 %0, [%1];" : "=h"(__HALF_TO_US(ret)) : __LDG_PTR(ptr) : "memory");
return ret;
}
__CUDA_FP16_DECL__ void __stwb(__half2 *const ptr, const __half2 value)
{
asm ("st.global.wb.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stwb(__half *const ptr, const __half value)
{
asm ("st.global.wb.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcg(__half2 *const ptr, const __half2 value)
{
asm ("st.global.cg.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcg(__half *const ptr, const __half value)
{
asm ("st.global.cg.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcs(__half2 *const ptr, const __half2 value)
{
asm ("st.global.cs.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stcs(__half *const ptr, const __half value)
{
asm ("st.global.cs.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stwt(__half2 *const ptr, const __half2 value)
{
asm ("st.global.wt.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__HALF2_TO_CUI(value)) : "memory");
}
__CUDA_FP16_DECL__ void __stwt(__half *const ptr, const __half value)
{
asm ("st.global.wt.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__HALF_TO_CUS(value)) : "memory");
}
#undef __LDG_PTR
#endif /* defined(__cplusplus) && (!defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 320) || defined(_NVHPC_CUDA)) */
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA)
/******************************************************************************
* __half2 comparison *
******************************************************************************/
#define __COMPARISON_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
asm( "{ " __CUDA_FP16_STRINGIFY(name) ".f16x2.f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
return val; \
} /* while(0) */
__CUDA_FP16_DECL__ __half2 __heq2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.eq)
}
__CUDA_FP16_DECL__ __half2 __hne2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.ne)
}
__CUDA_FP16_DECL__ __half2 __hle2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.le)
}
__CUDA_FP16_DECL__ __half2 __hge2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.ge)
}
__CUDA_FP16_DECL__ __half2 __hlt2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.lt)
}
__CUDA_FP16_DECL__ __half2 __hgt2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.gt)
}
__CUDA_FP16_DECL__ __half2 __hequ2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.equ)
}
__CUDA_FP16_DECL__ __half2 __hneu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.neu)
}
__CUDA_FP16_DECL__ __half2 __hleu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.leu)
}
__CUDA_FP16_DECL__ __half2 __hgeu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.geu)
}
__CUDA_FP16_DECL__ __half2 __hltu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.ltu)
}
__CUDA_FP16_DECL__ __half2 __hgtu2(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO(set.gtu)
}
#undef __COMPARISON_OP_HALF2_MACRO
/******************************************************************************
* __half2 comparison with mask output *
******************************************************************************/
#define __COMPARISON_OP_HALF2_MACRO_MASK(name) /* do */ {\
unsigned val; \
asm( "{ " __CUDA_FP16_STRINGIFY(name) ".u32.f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
return val; \
} /* while(0) */
__CUDA_FP16_DECL__ unsigned __heq2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.eq)
}
__CUDA_FP16_DECL__ unsigned __hne2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.ne)
}
__CUDA_FP16_DECL__ unsigned __hle2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.le)
}
__CUDA_FP16_DECL__ unsigned __hge2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.ge)
}
__CUDA_FP16_DECL__ unsigned __hlt2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.lt)
}
__CUDA_FP16_DECL__ unsigned __hgt2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.gt)
}
__CUDA_FP16_DECL__ unsigned __hequ2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.equ)
}
__CUDA_FP16_DECL__ unsigned __hneu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.neu)
}
__CUDA_FP16_DECL__ unsigned __hleu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.leu)
}
__CUDA_FP16_DECL__ unsigned __hgeu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.geu)
}
__CUDA_FP16_DECL__ unsigned __hltu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.ltu)
}
__CUDA_FP16_DECL__ unsigned __hgtu2_mask(const __half2 a, const __half2 b)
{
__COMPARISON_OP_HALF2_MACRO_MASK(set.gtu)
}
#undef __COMPARISON_OP_HALF2_MACRO_MASK
#define __BOOL_COMPARISON_OP_HALF2_MACRO(name) /* do */ {\
__half2 val; \
bool retval; \
asm( "{ " __CUDA_FP16_STRINGIFY(name) ".f16x2.f16x2 %0,%1,%2;\n}" \
:"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)),"r"(__HALF2_TO_CUI(b))); \
if (__HALF2_TO_CUI(val) == 0x3C003C00U) {\
retval = true; \
} else { \
retval = false; \
}\
return retval;\
} /* while(0) */
__CUDA_FP16_DECL__ bool __hbeq2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.eq)
}
__CUDA_FP16_DECL__ bool __hbne2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.ne)
}
__CUDA_FP16_DECL__ bool __hble2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.le)
}
__CUDA_FP16_DECL__ bool __hbge2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.ge)
}
__CUDA_FP16_DECL__ bool __hblt2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.lt)
}
__CUDA_FP16_DECL__ bool __hbgt2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.gt)
}
__CUDA_FP16_DECL__ bool __hbequ2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.equ)
}
__CUDA_FP16_DECL__ bool __hbneu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.neu)
}
__CUDA_FP16_DECL__ bool __hbleu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.leu)
}
__CUDA_FP16_DECL__ bool __hbgeu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.geu)
}
__CUDA_FP16_DECL__ bool __hbltu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.ltu)
}
__CUDA_FP16_DECL__ bool __hbgtu2(const __half2 a, const __half2 b)
{
__BOOL_COMPARISON_OP_HALF2_MACRO(set.gtu)
}
#undef __BOOL_COMPARISON_OP_HALF2_MACRO
/******************************************************************************
* __half comparison *
******************************************************************************/
#define __COMPARISON_OP_HALF_MACRO(name) /* do */ {\
unsigned short val; \
asm( "{ .reg .pred __$temp3;\n" \
" setp." __CUDA_FP16_STRINGIFY(name) ".f16 __$temp3, %1, %2;\n" \
" selp.u16 %0, 1, 0, __$temp3;}" \
: "=h"(val) : "h"(__HALF_TO_CUS(a)), "h"(__HALF_TO_CUS(b))); \
return (val != 0U) ? true : false; \
} /* while(0) */
__CUDA_FP16_DECL__ bool __heq(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(eq)
}
__CUDA_FP16_DECL__ bool __hne(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(ne)
}
__CUDA_FP16_DECL__ bool __hle(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(le)
}
__CUDA_FP16_DECL__ bool __hge(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(ge)
}
__CUDA_FP16_DECL__ bool __hlt(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(lt)
}
__CUDA_FP16_DECL__ bool __hgt(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(gt)
}
__CUDA_FP16_DECL__ bool __hequ(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(equ)
}
__CUDA_FP16_DECL__ bool __hneu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(neu)
}
__CUDA_FP16_DECL__ bool __hleu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(leu)
}
__CUDA_FP16_DECL__ bool __hgeu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(geu)
}
__CUDA_FP16_DECL__ bool __hltu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(ltu)
}
__CUDA_FP16_DECL__ bool __hgtu(const __half a, const __half b)
{
__COMPARISON_OP_HALF_MACRO(gtu)
}
#undef __COMPARISON_OP_HALF_MACRO
/******************************************************************************
* __half2 arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half2 __hadd2(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(add)
}
__CUDA_FP16_DECL__ __half2 __hsub2(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(sub)
}
__CUDA_FP16_DECL__ __half2 __hmul2(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(mul)
}
__CUDA_FP16_DECL__ __half2 __hadd2_sat(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(add.sat)
}
__CUDA_FP16_DECL__ __half2 __hsub2_sat(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(sub.sat)
}
__CUDA_FP16_DECL__ __half2 __hmul2_sat(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(mul.sat)
}
__CUDA_FP16_DECL__ __half2 __hadd2_rn(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(add.rn)
}
__CUDA_FP16_DECL__ __half2 __hsub2_rn(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(sub.rn)
}
__CUDA_FP16_DECL__ __half2 __hmul2_rn(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(mul.rn)
}
__CUDA_FP16_DECL__ __half2 __hfma2(const __half2 a, const __half2 b, const __half2 c)
{
__TERNARY_OP_HALF2_MACRO(fma.rn)
}
__CUDA_FP16_DECL__ __half2 __hfma2_sat(const __half2 a, const __half2 b, const __half2 c)
{
__TERNARY_OP_HALF2_MACRO(fma.rn.sat)
}
__CUDA_FP16_DECL__ __half2 __h2div(const __half2 a, const __half2 b) {
__half ha = __low2half(a);
__half hb = __low2half(b);
const __half v1 = __hdiv(ha, hb);
ha = __high2half(a);
hb = __high2half(b);
const __half v2 = __hdiv(ha, hb);
return __halves2half2(v1, v2);
}
/******************************************************************************
* __half arithmetic *
******************************************************************************/
__CUDA_FP16_DECL__ __half __hadd(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(add)
}
__CUDA_FP16_DECL__ __half __hsub(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(sub)
}
__CUDA_FP16_DECL__ __half __hmul(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(mul)
}
__CUDA_FP16_DECL__ __half __hadd_sat(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(add.sat)
}
__CUDA_FP16_DECL__ __half __hsub_sat(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(sub.sat)
}
__CUDA_FP16_DECL__ __half __hmul_sat(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(mul.sat)
}
__CUDA_FP16_DECL__ __half __hadd_rn(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(add.rn)
}
__CUDA_FP16_DECL__ __half __hsub_rn(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(sub.rn)
}
__CUDA_FP16_DECL__ __half __hmul_rn(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(mul.rn)
}
__CUDA_FP16_DECL__ __half __hfma(const __half a, const __half b, const __half c)
{
__TERNARY_OP_HALF_MACRO(fma.rn)
}
__CUDA_FP16_DECL__ __half __hfma_sat(const __half a, const __half b, const __half c)
{
__TERNARY_OP_HALF_MACRO(fma.rn.sat)
}
__CUDA_FP16_DECL__ __half __hdiv(const __half a, const __half b) {
__half v;
__half abs;
__half den;
__HALF_TO_US(den) = 0x008FU;
float rcp;
const float fa = __half2float(a);
const float fb = __half2float(b);
asm("{rcp.approx.ftz.f32 %0, %1;\n}" :"=f"(rcp) : "f"(fb));
float fv = rcp * fa;
v = __float2half(fv);
abs = __habs(v);
if (__hlt(abs, den) && __hlt(__float2half(0.0f), abs)) {
const float err = __fmaf_rn(-fb, fv, fa);
fv = __fmaf_rn(rcp, err, fv);
v = __float2half(fv);
}
return v;
}
/******************************************************************************
* __half2 functions *
******************************************************************************/
#define __SPEC_CASE2(i,r, spc, ulp) \
"{.reg.b32 spc, ulp, p;\n"\
" mov.b32 spc," __CUDA_FP16_STRINGIFY(spc) ";\n"\
" mov.b32 ulp," __CUDA_FP16_STRINGIFY(ulp) ";\n"\
" set.eq.f16x2.f16x2 p," __CUDA_FP16_STRINGIFY(i) ", spc;\n"\
" fma.rn.f16x2 " __CUDA_FP16_STRINGIFY(r) ",p,ulp," __CUDA_FP16_STRINGIFY(r) ";\n}\n"
#define __SPEC_CASE(i,r, spc, ulp) \
"{.reg.b16 spc, ulp, p;\n"\
" mov.b16 spc," __CUDA_FP16_STRINGIFY(spc) ";\n"\
" mov.b16 ulp," __CUDA_FP16_STRINGIFY(ulp) ";\n"\
" set.eq.f16.f16 p," __CUDA_FP16_STRINGIFY(i) ", spc;\n"\
" fma.rn.f16 " __CUDA_FP16_STRINGIFY(r) ",p,ulp," __CUDA_FP16_STRINGIFY(r) ";\n}\n"
#define __APPROX_FCAST(fun) /* do */ {\
__half val;\
asm("{.reg.b32 f; \n"\
" .reg.b16 r; \n"\
" mov.b16 r,%1; \n"\
" cvt.f32.f16 f,r; \n"\
" " __CUDA_FP16_STRINGIFY(fun) ".approx.ftz.f32 f,f; \n"\
" cvt.rn.f16.f32 r,f; \n"\
" mov.b16 %0,r; \n"\
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));\
return val;\
} /* while(0) */
#define __APPROX_FCAST2(fun) /* do */ {\
__half2 val;\
asm("{.reg.b16 hl, hu; \n"\
" .reg.b32 fl, fu; \n"\
" mov.b32 {hl, hu}, %1; \n"\
" cvt.f32.f16 fl, hl; \n"\
" cvt.f32.f16 fu, hu; \n"\
" " __CUDA_FP16_STRINGIFY(fun) ".approx.ftz.f32 fl, fl; \n"\
" " __CUDA_FP16_STRINGIFY(fun) ".approx.ftz.f32 fu, fu; \n"\
" cvt.rn.f16.f32 hl, fl; \n"\
" cvt.rn.f16.f32 hu, fu; \n"\
" mov.b32 %0, {hl, hu}; \n"\
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a))); \
return val;\
} /* while(0) */
static __device__ __forceinline__ float __float_simpl_sinf(float a);
static __device__ __forceinline__ float __float_simpl_cosf(float a);
__CUDA_FP16_DECL__ __half hsin(const __half a) {
const float sl = __float_simpl_sinf(__half2float(a));
__half r = __float2half_rn(sl);
asm("{\n\t"
" .reg.b16 i,r,t; \n\t"
" mov.b16 r, %0; \n\t"
" mov.b16 i, %1; \n\t"
" and.b16 t, r, 0x8000U; \n\t"
" abs.f16 r, r; \n\t"
" abs.f16 i, i; \n\t"
__SPEC_CASE(i, r, 0X32B3U, 0x0800U)
__SPEC_CASE(i, r, 0X5CB0U, 0x9000U)
" or.b16 r,r,t; \n\t"
" mov.b16 %0, r; \n"
"}\n" : "+h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 h2sin(const __half2 a) {
const float sl = __float_simpl_sinf(__half2float(a.x));
const float sh = __float_simpl_sinf(__half2float(a.y));
__half2 r = __floats2half2_rn(sl, sh);
asm("{\n\t"
" .reg.b32 i,r,t; \n\t"
" mov.b32 r, %0; \n\t"
" mov.b32 i, %1; \n\t"
" and.b32 t, r, 0x80008000U; \n\t"
" abs.f16x2 r, r; \n\t"
" abs.f16x2 i, i; \n\t"
__SPEC_CASE2(i, r, 0X32B332B3U, 0x08000800U)
__SPEC_CASE2(i, r, 0X5CB05CB0U, 0x90009000U)
" or.b32 r, r, t; \n\t"
" mov.b32 %0, r; \n"
"}\n" : "+r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ __half hcos(const __half a) {
const float cl = __float_simpl_cosf(__half2float(a));
__half r = __float2half_rn(cl);
asm("{\n\t"
" .reg.b16 i,r; \n\t"
" mov.b16 r, %0; \n\t"
" mov.b16 i, %1; \n\t"
" abs.f16 i, i; \n\t"
__SPEC_CASE(i, r, 0X2B7CU, 0x1000U)
" mov.b16 %0, r; \n"
"}\n" : "+h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 h2cos(const __half2 a) {
const float cl = __float_simpl_cosf(__half2float(a.x));
const float ch = __float_simpl_cosf(__half2float(a.y));
__half2 r = __floats2half2_rn(cl, ch);
asm("{\n\t"
" .reg.b32 i,r; \n\t"
" mov.b32 r, %0; \n\t"
" mov.b32 i, %1; \n\t"
" abs.f16x2 i, i; \n\t"
__SPEC_CASE2(i, r, 0X2B7C2B7CU, 0x10001000U)
" mov.b32 %0, r; \n"
"}\n" : "+r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
static __device__ __forceinline__ float __internal_trig_reduction_kernel(const float a, unsigned int *const quadrant)
{
const float ar = __fmaf_rn(a, 0.636619772F, 12582912.0F);
const unsigned q = __float_as_uint(ar);
const float j = __fsub_rn(ar, 12582912.0F);
float t = __fmaf_rn(j, -1.5707962512969971e+000F, a);
t = __fmaf_rn(j, -7.5497894158615964e-008F, t);
*quadrant = q;
return t;
}
static __device__ __forceinline__ float __internal_sin_cos_kernel(const float x, const unsigned int i)
{
float z;
const float x2 = x*x;
float a8;
float a6;
float a4;
float a2;
float a1;
float a0;
if ((i & 1U) != 0U) {
// cos
a8 = 2.44331571e-5F;
a6 = -1.38873163e-3F;
a4 = 4.16666457e-2F;
a2 = -5.00000000e-1F;
a1 = x2;
a0 = 1.0F;
}
else {
// sin
a8 = -1.95152959e-4F;
a6 = 8.33216087e-3F;
a4 = -1.66666546e-1F;
a2 = 0.0F;
a1 = x;
a0 = x;
}
z = __fmaf_rn(a8, x2, a6);
z = __fmaf_rn(z, x2, a4);
z = __fmaf_rn(z, x2, a2);
z = __fmaf_rn(z, a1, a0);
if ((i & 2U) != 0U) {
z = -z;
}
return z;
}
static __device__ __forceinline__ float __float_simpl_sinf(float a)
{
float z;
unsigned i;
a = __internal_trig_reduction_kernel(a, &i);
z = __internal_sin_cos_kernel(a, i);
return z;
}
static __device__ __forceinline__ float __float_simpl_cosf(float a)
{
float z;
unsigned i;
a = __internal_trig_reduction_kernel(a, &i);
z = __internal_sin_cos_kernel(a, (i & 0x3U) + 1U);
return z;
}
__CUDA_FP16_DECL__ __half hexp(const __half a) {
__half val;
asm("{.reg.b32 f, C, nZ; \n"
" .reg.b16 h,r; \n"
" mov.b16 h,%1; \n"
" cvt.f32.f16 f,h; \n"
" mov.b32 C, 0x3fb8aa3bU; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 f,f,C,nZ; \n"
" ex2.approx.ftz.f32 f,f; \n"
" cvt.rn.f16.f32 r,f; \n"
__SPEC_CASE(h, r, 0X1F79U, 0x9400U)
__SPEC_CASE(h, r, 0X25CFU, 0x9400U)
__SPEC_CASE(h, r, 0XC13BU, 0x0400U)
__SPEC_CASE(h, r, 0XC1EFU, 0x0200U)
" mov.b16 %0,r; \n"
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2exp(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 h,r,fl,fu,C,nZ; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" mov.b32 C, 0x3fb8aa3bU; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 fl,fl,C,nZ; \n"
" fma.rn.f32 fu,fu,C,nZ; \n"
" ex2.approx.ftz.f32 fl, fl; \n"
" ex2.approx.ftz.f32 fu, fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0X1F791F79U, 0x94009400U)
__SPEC_CASE2(h, r, 0X25CF25CFU, 0x94009400U)
__SPEC_CASE2(h, r, 0XC13BC13BU, 0x04000400U)
__SPEC_CASE2(h, r, 0XC1EFC1EFU, 0x02000200U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hexp2(const __half a) {
__half val;
asm("{.reg.b32 f, ULP; \n"
" .reg.b16 r; \n"
" mov.b16 r,%1; \n"
" cvt.f32.f16 f,r; \n"
" ex2.approx.ftz.f32 f,f; \n"
" mov.b32 ULP, 0x33800000U;\n"
" fma.rn.f32 f,f,ULP,f; \n"
" cvt.rn.f16.f32 r,f; \n"
" mov.b16 %0,r; \n"
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2exp2(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 fl, fu, ULP; \n"
" mov.b32 {hl, hu}, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" ex2.approx.ftz.f32 fl, fl; \n"
" ex2.approx.ftz.f32 fu, fu; \n"
" mov.b32 ULP, 0x33800000U;\n"
" fma.rn.f32 fl,fl,ULP,fl; \n"
" fma.rn.f32 fu,fu,ULP,fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 %0, {hl, hu}; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hexp10(const __half a) {
__half val;
asm("{.reg.b16 h,r; \n"
" .reg.b32 f, C, nZ; \n"
" mov.b16 h, %1; \n"
" cvt.f32.f16 f, h; \n"
" mov.b32 C, 0x40549A78U; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 f,f,C,nZ; \n"
" ex2.approx.ftz.f32 f, f; \n"
" cvt.rn.f16.f32 r, f; \n"
__SPEC_CASE(h, r, 0x34DEU, 0x9800U)
__SPEC_CASE(h, r, 0x9766U, 0x9000U)
__SPEC_CASE(h, r, 0x9972U, 0x1000U)
__SPEC_CASE(h, r, 0xA5C4U, 0x1000U)
__SPEC_CASE(h, r, 0xBF0AU, 0x8100U)
" mov.b16 %0, r; \n"
"}":"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2exp10(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 h,r,fl,fu,C,nZ; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" mov.b32 C, 0x40549A78U; \n"
" mov.b32 nZ, 0x80000000U;\n"
" fma.rn.f32 fl,fl,C,nZ; \n"
" fma.rn.f32 fu,fu,C,nZ; \n"
" ex2.approx.ftz.f32 fl, fl; \n"
" ex2.approx.ftz.f32 fu, fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0x34DE34DEU, 0x98009800U)
__SPEC_CASE2(h, r, 0x97669766U, 0x90009000U)
__SPEC_CASE2(h, r, 0x99729972U, 0x10001000U)
__SPEC_CASE2(h, r, 0xA5C4A5C4U, 0x10001000U)
__SPEC_CASE2(h, r, 0xBF0ABF0AU, 0x81008100U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hlog2(const __half a) {
__half val;
asm("{.reg.b16 h, r; \n"
" .reg.b32 f; \n"
" mov.b16 h, %1; \n"
" cvt.f32.f16 f, h; \n"
" lg2.approx.ftz.f32 f, f; \n"
" cvt.rn.f16.f32 r, f; \n"
__SPEC_CASE(r, r, 0xA2E2U, 0x8080U)
__SPEC_CASE(r, r, 0xBF46U, 0x9400U)
" mov.b16 %0, r; \n"
"}":"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2log2(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 fl, fu, r, p; \n"
" mov.b32 {hl, hu}, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" lg2.approx.ftz.f32 fl, fl; \n"
" lg2.approx.ftz.f32 fu, fu; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(r, r, 0xA2E2A2E2U, 0x80808080U)
__SPEC_CASE2(r, r, 0xBF46BF46U, 0x94009400U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hlog(const __half a) {
__half val;
asm("{.reg.b32 f, C; \n"
" .reg.b16 r,h; \n"
" mov.b16 h,%1; \n"
" cvt.f32.f16 f,h; \n"
" lg2.approx.ftz.f32 f,f; \n"
" mov.b32 C, 0x3f317218U; \n"
" mul.f32 f,f,C; \n"
" cvt.rn.f16.f32 r,f; \n"
__SPEC_CASE(h, r, 0X160DU, 0x9C00U)
__SPEC_CASE(h, r, 0X3BFEU, 0x8010U)
__SPEC_CASE(h, r, 0X3C0BU, 0x8080U)
__SPEC_CASE(h, r, 0X6051U, 0x1C00U)
" mov.b16 %0,r; \n"
"}": "=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2log(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 r, fl, fu, C, h; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" lg2.approx.ftz.f32 fl, fl; \n"
" lg2.approx.ftz.f32 fu, fu; \n"
" mov.b32 C, 0x3f317218U; \n"
" mul.f32 fl,fl,C; \n"
" mul.f32 fu,fu,C; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0X160D160DU, 0x9C009C00U)
__SPEC_CASE2(h, r, 0X3BFE3BFEU, 0x80108010U)
__SPEC_CASE2(h, r, 0X3C0B3C0BU, 0x80808080U)
__SPEC_CASE2(h, r, 0X60516051U, 0x1C001C00U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
__CUDA_FP16_DECL__ __half hlog10(const __half a) {
__half val;
asm("{.reg.b16 h, r; \n"
" .reg.b32 f, C; \n"
" mov.b16 h, %1; \n"
" cvt.f32.f16 f, h; \n"
" lg2.approx.ftz.f32 f, f; \n"
" mov.b32 C, 0x3E9A209BU; \n"
" mul.f32 f,f,C; \n"
" cvt.rn.f16.f32 r, f; \n"
__SPEC_CASE(h, r, 0x338FU, 0x1000U)
__SPEC_CASE(h, r, 0x33F8U, 0x9000U)
__SPEC_CASE(h, r, 0x57E1U, 0x9800U)
__SPEC_CASE(h, r, 0x719DU, 0x9C00U)
" mov.b16 %0, r; \n"
"}":"=h"(__HALF_TO_US(val)) : "h"(__HALF_TO_CUS(a)));
return val;
}
__CUDA_FP16_DECL__ __half2 h2log10(const __half2 a) {
__half2 val;
asm("{.reg.b16 hl, hu; \n"
" .reg.b32 r, fl, fu, C, h; \n"
" mov.b32 {hl, hu}, %1; \n"
" mov.b32 h, %1; \n"
" cvt.f32.f16 fl, hl; \n"
" cvt.f32.f16 fu, hu; \n"
" lg2.approx.ftz.f32 fl, fl; \n"
" lg2.approx.ftz.f32 fu, fu; \n"
" mov.b32 C, 0x3E9A209BU; \n"
" mul.f32 fl,fl,C; \n"
" mul.f32 fu,fu,C; \n"
" cvt.rn.f16.f32 hl, fl; \n"
" cvt.rn.f16.f32 hu, fu; \n"
" mov.b32 r, {hl, hu}; \n"
__SPEC_CASE2(h, r, 0x338F338FU, 0x10001000U)
__SPEC_CASE2(h, r, 0x33F833F8U, 0x90009000U)
__SPEC_CASE2(h, r, 0x57E157E1U, 0x98009800U)
__SPEC_CASE2(h, r, 0x719D719DU, 0x9C009C00U)
" mov.b32 %0, r; \n"
"}":"=r"(__HALF2_TO_UI(val)) : "r"(__HALF2_TO_CUI(a)));
return val;
}
#undef __SPEC_CASE2
#undef __SPEC_CASE
__CUDA_FP16_DECL__ __half2 h2rcp(const __half2 a) {
__APPROX_FCAST2(rcp)
}
__CUDA_FP16_DECL__ __half hrcp(const __half a) {
__APPROX_FCAST(rcp)
}
__CUDA_FP16_DECL__ __half2 h2rsqrt(const __half2 a) {
__APPROX_FCAST2(rsqrt)
}
__CUDA_FP16_DECL__ __half hrsqrt(const __half a) {
__APPROX_FCAST(rsqrt)
}
__CUDA_FP16_DECL__ __half2 h2sqrt(const __half2 a) {
__APPROX_FCAST2(sqrt)
}
__CUDA_FP16_DECL__ __half hsqrt(const __half a) {
__APPROX_FCAST(sqrt)
}
#undef __APPROX_FCAST
#undef __APPROX_FCAST2
__CUDA_FP16_DECL__ __half2 __hisnan2(const __half2 a)
{
__half2 r;
asm("{set.nan.f16x2.f16x2 %0,%1,%2;\n}"
:"=r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)), "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ bool __hisnan(const __half a)
{
__half r;
asm("{set.nan.f16.f16 %0,%1,%2;\n}"
:"=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)), "h"(__HALF_TO_CUS(a)));
return __HALF_TO_CUS(r) != 0U;
}
__CUDA_FP16_DECL__ __half2 __hneg2(const __half2 a)
{
__half2 r;
asm("{neg.f16x2 %0,%1;\n}"
:"=r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ __half __hneg(const __half a)
{
__half r;
asm("{neg.f16 %0,%1;\n}"
:"=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 __habs2(const __half2 a)
{
__half2 r;
asm("{abs.f16x2 %0,%1;\n}"
:"=r"(__HALF2_TO_UI(r)) : "r"(__HALF2_TO_CUI(a)));
return r;
}
__CUDA_FP16_DECL__ __half __habs(const __half a)
{
__half r;
asm("{abs.f16 %0,%1;\n}"
:"=h"(__HALF_TO_US(r)) : "h"(__HALF_TO_CUS(a)));
return r;
}
__CUDA_FP16_DECL__ __half2 __hcmadd(const __half2 a, const __half2 b, const __half2 c)
{
// fast version of complex multiply-accumulate
// (a.re, a.im) * (b.re, b.im) + (c.re, c.im)
// acc.re = (c.re + a.re*b.re) - a.im*b.im
// acc.im = (c.im + a.re*b.im) + a.im*b.re
__half real_tmp = __hfma(a.x, b.x, c.x);
__half img_tmp = __hfma(a.x, b.y, c.y);
real_tmp = __hfma(__hneg(a.y), b.y, real_tmp);
img_tmp = __hfma(a.y, b.x, img_tmp);
return make_half2(real_tmp, img_tmp);
}
#endif /* !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) || defined(_NVHPC_CUDA) */
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)
__CUDA_FP16_DECL__ __half __hmax_nan(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(max.NaN)
}
__CUDA_FP16_DECL__ __half __hmin_nan(const __half a, const __half b)
{
__BINARY_OP_HALF_MACRO(min.NaN)
}
__CUDA_FP16_DECL__ __half __hfma_relu(const __half a, const __half b, const __half c)
{
__TERNARY_OP_HALF_MACRO(fma.rn.relu)
}
__CUDA_FP16_DECL__ __half2 __hmax2_nan(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(max.NaN)
}
__CUDA_FP16_DECL__ __half2 __hmin2_nan(const __half2 a, const __half2 b)
{
__BINARY_OP_HALF2_MACRO(min.NaN)
}
__CUDA_FP16_DECL__ __half2 __hfma2_relu(const __half2 a, const __half2 b, const __half2 c)
{
__TERNARY_OP_HALF2_MACRO(fma.rn.relu)
}
#endif /*defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 800)*/
/* Define __PTR for atomicAdd prototypes below, undef after done */
#if (defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)
#define __PTR "l"
#else
#define __PTR "r"
#endif /*(defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)*/
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
__CUDA_FP16_DECL__ __half2 atomicAdd(__half2 *const address, const __half2 val) {
__half2 r;
asm volatile ("{ atom.add.noftz.f16x2 %0,[%1],%2; }\n"
: "=r"(__HALF2_TO_UI(r)) : __PTR(address), "r"(__HALF2_TO_CUI(val))
: "memory");
return r;
}
#endif /*defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)*/
#if defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 700)
__CUDA_FP16_DECL__ __half atomicAdd(__half *const address, const __half val) {
__half r;
asm volatile ("{ atom.add.noftz.f16 %0,[%1],%2; }\n"
: "=h"(__HALF_TO_US(r))
: __PTR(address), "h"(__HALF_TO_CUS(val))
: "memory");
return r;
}
#endif /*defined(_NVHPC_CUDA) || !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 700)*/
#undef __PTR
#undef __CUDA_FP16_DECL__
#endif /* defined(__CUDACC__) */
#endif /* defined(__cplusplus) */
#undef __TERNARY_OP_HALF2_MACRO
#undef __TERNARY_OP_HALF_MACRO
#undef __BINARY_OP_HALF2_MACRO
#undef __BINARY_OP_HALF_MACRO
#undef __CUDA_HOSTDEVICE_FP16_DECL__
#undef __CUDA_FP16_DECL__
#undef __HALF_TO_US
#undef __HALF_TO_CUS
#undef __HALF2_TO_UI
#undef __HALF2_TO_CUI
/* Define first-class types "half" and "half2", unless user specifies otherwise via "#define CUDA_NO_HALF" */
/* C cannot ever have these types defined here, because __half and __half2 are C++ classes */
#if defined(__cplusplus) && !defined(CUDA_NO_HALF)
typedef __half half;
typedef __half2 half2;
// for consistency with __nv_bfloat16
typedef __half __nv_half;
typedef __half2 __nv_half2;
typedef __half_raw __nv_half_raw;
typedef __half2_raw __nv_half2_raw;
typedef __half nv_half;
typedef __half2 nv_half2;
#endif /* defined(__cplusplus) && !defined(CUDA_NO_HALF) */
#if defined(__CPP_VERSION_AT_LEAST_11_FP16)
#undef __CPP_VERSION_AT_LEAST_11_FP16
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP16) */
#endif /* end of include guard: __CUDA_FP16_HPP__ */
|