File size: 2,467 Bytes
865c8a0 fd6d3ae 865c8a0 fd6d3ae 865c8a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bert-base-chinese-finetuned-ner-food
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-chinese-finetuned-ner-food
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0039
- F1: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0829 | 1.0 | 3 | 1.6749 | 0.0 |
| 1.5535 | 2.0 | 6 | 1.0327 | 0.6354 |
| 1.0573 | 3.0 | 9 | 0.6295 | 0.7097 |
| 0.5854 | 4.0 | 12 | 0.3763 | 0.8271 |
| 0.4292 | 5.0 | 15 | 0.2165 | 0.9059 |
| 0.2235 | 6.0 | 18 | 0.1121 | 0.9836 |
| 0.1535 | 7.0 | 21 | 0.0597 | 0.9975 |
| 0.0846 | 8.0 | 24 | 0.0337 | 0.9975 |
| 0.0613 | 9.0 | 27 | 0.0214 | 1.0 |
| 0.0365 | 10.0 | 30 | 0.0144 | 1.0 |
| 0.0302 | 11.0 | 33 | 0.0103 | 1.0 |
| 0.0182 | 12.0 | 36 | 0.0078 | 1.0 |
| 0.0175 | 13.0 | 39 | 0.0064 | 1.0 |
| 0.0115 | 14.0 | 42 | 0.0055 | 1.0 |
| 0.0124 | 15.0 | 45 | 0.0049 | 1.0 |
| 0.0117 | 16.0 | 48 | 0.0045 | 1.0 |
| 0.0111 | 17.0 | 51 | 0.0042 | 1.0 |
| 0.0102 | 18.0 | 54 | 0.0041 | 1.0 |
| 0.0096 | 19.0 | 57 | 0.0040 | 1.0 |
| 0.0095 | 20.0 | 60 | 0.0039 | 1.0 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.12.0+cu102
- Datasets 1.18.4
- Tokenizers 0.12.1
|