File size: 2,077 Bytes
3056c66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-common_voice-tr-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-common_voice-tr-ft
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3736
- Wer: 0.2930
- Cer: 0.0708
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 96
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.5462 | 13.51 | 500 | 0.4423 | 0.4807 | 0.1188 |
| 0.342 | 27.03 | 1000 | 0.3781 | 0.3954 | 0.0967 |
| 0.2272 | 40.54 | 1500 | 0.3816 | 0.3595 | 0.0893 |
| 0.1805 | 54.05 | 2000 | 0.3943 | 0.3487 | 0.0854 |
| 0.1318 | 67.57 | 2500 | 0.3818 | 0.3262 | 0.0801 |
| 0.1213 | 81.08 | 3000 | 0.3777 | 0.3113 | 0.0758 |
| 0.0639 | 94.59 | 3500 | 0.3788 | 0.2953 | 0.0716 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.8.0
- Datasets 1.17.0
- Tokenizers 0.10.3
|