File size: 7,429 Bytes
b5a178d 464c02e b5a178d 464c02e b5a178d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VGCN-BERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
VGCNBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"zhibinlu/vgcn-distilbert-base-uncased": "https://huggingface.co/zhibinlu/vgcn-distilbert-base-uncased/resolve/main/config.json",
}
class VGCNBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VGCNBertModel`] or a [`TFVGCNBertModel`]. It
is used to instantiate a VGCN-BERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the VGCN-BERT
[zhibinlu/vgcn-distilbert-base-uncased](https://huggingface.co/zhibinlu/vgcn-distilbert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vgcn_graph_embedding_dim (`int`, *optional*, defaults to 16):
Dimensionality of the number of output embedding from VGCN graph embedding module.
vgcn_hidden_dim (`int`, *optional*, defaults to 128):
Dimensionality of the graph convolutional hidden layer in VGCN.
vgcn_activation (`str` or `Callable`, *optional*, defaults to `"None"`):
The non-linear activation function (function or string) for graph convolutional layer in VGCN.
If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
vgcn_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for VGCN graph embedding module.
vgcn_weight_init_mode (`str`, defaults to `"transparent"`):
The weight initialization mode for VGCN graph embedding module,
`"transparent"`, `"normal"`, `"uniform"` are supported.
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the VGCN-BERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`VGCNBertModel`] or [`TFVGCNBertModel`].
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`):
Whether to use sinusoidal positional embeddings.
n_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
n_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
dim (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
hidden_dim (`int`, *optional*, defaults to 3072):
The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qa_dropout (`float`, *optional*, defaults to 0.1):
The dropout probabilities used in the question answering model [`VGCNBertForQuestionAnswering`].
seq_classif_dropout (`float`, *optional*, defaults to 0.2):
The dropout probabilities used in the sequence classification and the multiple choice model
[`VGCNBertForSequenceClassification`].
Examples:
```python
>>> from transformers import VGCNBertConfig, VGCNBertModel
>>> # Initializing a VGCN-BERT configuration
>>> configuration = VGCNBertConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = VGCNBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vgcn-bert"
attribute_map = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__(
self,
vgcn_graph_embds_dim=16,
vgcn_hidden_dim=128,
vgcn_activation=None,
vgcn_dropout=0.1,
vgcn_weight_init_mode="transparent",
vocab_size=30522,
max_position_embeddings=512,
sinusoidal_pos_embds=False,
n_layers=6,
n_heads=12,
dim=768,
hidden_dim=4 * 768,
dropout=0.1,
attention_dropout=0.1,
activation="gelu",
initializer_range=0.02,
qa_dropout=0.1,
seq_classif_dropout=0.2,
pad_token_id=0,
**kwargs,
):
self.vgcn_graph_embds_dim = vgcn_graph_embds_dim
self.vgcn_hidden_dim = vgcn_hidden_dim
self.vgcn_activation = vgcn_activation
self.vgcn_dropout = vgcn_dropout
self.vgcn_weight_init_mode = vgcn_weight_init_mode
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.sinusoidal_pos_embds = sinusoidal_pos_embds
self.n_layers = n_layers
self.n_heads = n_heads
self.dim = dim
self.hidden_dim = hidden_dim
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation = activation
self.initializer_range = initializer_range
self.qa_dropout = qa_dropout
self.seq_classif_dropout = seq_classif_dropout
super().__init__(**kwargs, pad_token_id=pad_token_id)
class VGCNBertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
|