File size: 7,429 Bytes
b5a178d
 
 
 
 
 
 
 
 
 
 
 
 
464c02e
b5a178d
464c02e
b5a178d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" VGCN-BERT model configuration"""

from collections import OrderedDict
from typing import Mapping

from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

VGCNBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "zhibinlu/vgcn-distilbert-base-uncased": "https://huggingface.co/zhibinlu/vgcn-distilbert-base-uncased/resolve/main/config.json",
}


class VGCNBertConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`VGCNBertModel`] or a [`TFVGCNBertModel`]. It
    is used to instantiate a VGCN-BERT model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the VGCN-BERT
    [zhibinlu/vgcn-distilbert-base-uncased](https://huggingface.co/zhibinlu/vgcn-distilbert-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vgcn_graph_embedding_dim (`int`, *optional*, defaults to 16):
            Dimensionality of the number of output embedding from VGCN graph embedding module.
        vgcn_hidden_dim (`int`, *optional*, defaults to 128):
            Dimensionality of the graph convolutional hidden layer in VGCN.
        vgcn_activation (`str` or `Callable`, *optional*, defaults to `"None"`):
            The non-linear activation function (function or string) for graph convolutional layer in VGCN.
            If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
        vgcn_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for VGCN graph embedding module.
        vgcn_weight_init_mode (`str`, defaults to `"transparent"`):
            The weight initialization mode for VGCN graph embedding module,
            `"transparent"`, `"normal"`, `"uniform"` are supported.
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the VGCN-BERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`VGCNBertModel`] or [`TFVGCNBertModel`].
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`):
            Whether to use sinusoidal positional embeddings.
        n_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        n_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        dim (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        hidden_dim (`int`, *optional*, defaults to 3072):
            The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        qa_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probabilities used in the question answering model [`VGCNBertForQuestionAnswering`].
        seq_classif_dropout (`float`, *optional*, defaults to 0.2):
            The dropout probabilities used in the sequence classification and the multiple choice model
            [`VGCNBertForSequenceClassification`].

    Examples:

    ```python
    >>> from transformers import VGCNBertConfig, VGCNBertModel

    >>> # Initializing a VGCN-BERT configuration
    >>> configuration = VGCNBertConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = VGCNBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "vgcn-bert"
    attribute_map = {
        "hidden_size": "dim",
        "num_attention_heads": "n_heads",
        "num_hidden_layers": "n_layers",
    }

    def __init__(
        self,
        vgcn_graph_embds_dim=16,
        vgcn_hidden_dim=128,
        vgcn_activation=None,
        vgcn_dropout=0.1,
        vgcn_weight_init_mode="transparent",
        vocab_size=30522,
        max_position_embeddings=512,
        sinusoidal_pos_embds=False,
        n_layers=6,
        n_heads=12,
        dim=768,
        hidden_dim=4 * 768,
        dropout=0.1,
        attention_dropout=0.1,
        activation="gelu",
        initializer_range=0.02,
        qa_dropout=0.1,
        seq_classif_dropout=0.2,
        pad_token_id=0,
        **kwargs,
    ):
        self.vgcn_graph_embds_dim = vgcn_graph_embds_dim
        self.vgcn_hidden_dim = vgcn_hidden_dim
        self.vgcn_activation = vgcn_activation
        self.vgcn_dropout = vgcn_dropout
        self.vgcn_weight_init_mode = vgcn_weight_init_mode
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.sinusoidal_pos_embds = sinusoidal_pos_embds
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.dim = dim
        self.hidden_dim = hidden_dim
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation = activation
        self.initializer_range = initializer_range
        self.qa_dropout = qa_dropout
        self.seq_classif_dropout = seq_classif_dropout
        super().__init__(**kwargs, pad_token_id=pad_token_id)


class VGCNBertOnnxConfig(OnnxConfig):
    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        if self.task == "multiple-choice":
            dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
        else:
            dynamic_axis = {0: "batch", 1: "sequence"}
        return OrderedDict(
            [
                ("input_ids", dynamic_axis),
                ("attention_mask", dynamic_axis),
            ]
        )