File size: 79,925 Bytes
b5a178d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777dbcc
 
b5a178d
 
 
777dbcc
b5a178d
 
777dbcc
b5a178d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777dbcc
b5a178d
 
 
 
 
 
 
 
 
 
 
 
777dbcc
b5a178d
 
 
777dbcc
464c02e
b5a178d
 
 
777dbcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a178d
777dbcc
 
 
 
 
 
 
b5a178d
 
777dbcc
 
 
 
 
b5a178d
 
777dbcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50c753d
 
 
777dbcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a178d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777dbcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a178d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777dbcc
 
b5a178d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
New VGCN-BERT model
Paper: https://arxiv.org/abs/2004.05707
"""


from collections import Counter
import math
from typing import Dict, List, Optional, Set, Tuple, Union
import scipy.sparse as sp

import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.configuration_utils import PretrainedConfig

from transformers.activations import get_activation
from transformers.deepspeed import is_deepspeed_zero3_enabled
from transformers.modeling_outputs import (
    BaseModelOutput,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizerBase
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_vgcn_bert import VGCNBertConfig


logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "zhibinlu/vgcn-bert-distilbert-base-uncased"
_CONFIG_FOR_DOC = "VGCNBertConfig"

VGCNBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "zhibinlu/vgcn-bert-distilbert-base-uncased",
    # See all VGCN-BERT models at https://huggingface.co/models?filter=vgcn-bert
]


# Word Graph construction utils #

ENGLISH_STOP_WORDS = frozenset(
    {
        "herself",
        "each",
        "him",
        "been",
        "only",
        "yourselves",
        "into",
        "where",
        "them",
        "very",
        "we",
        "that",
        "re",
        "too",
        "some",
        "what",
        "those",
        "me",
        "whom",
        "have",
        "yours",
        "an",
        "during",
        "any",
        "nor",
        "ourselves",
        "has",
        "do",
        "when",
        "about",
        "same",
        "our",
        "then",
        "himself",
        "their",
        "all",
        "no",
        "a",
        "hers",
        "off",
        "why",
        "how",
        "more",
        "between",
        "until",
        "not",
        "over",
        "your",
        "by",
        "here",
        "most",
        "above",
        "up",
        "of",
        "is",
        "after",
        "from",
        "being",
        "i",
        "as",
        "other",
        "so",
        "her",
        "ours",
        "on",
        "because",
        "against",
        "and",
        "out",
        "had",
        "these",
        "at",
        "both",
        "down",
        "you",
        "can",
        "she",
        "few",
        "the",
        "if",
        "it",
        "to",
        "but",
        "its",
        "be",
        "he",
        "once",
        "further",
        "such",
        "there",
        "through",
        "are",
        "themselves",
        "which",
        "in",
        "now",
        "his",
        "yourself",
        "this",
        "were",
        "below",
        "should",
        "my",
        "myself",
        "am",
        "or",
        "while",
        "itself",
        "again",
        "with",
        "they",
        "will",
        "own",
        "than",
        "before",
        "under",
        "was",
        "for",
        "who",
    }
)

def _normalize_adj(adj):
    """Symmetrically normalize adjacency matrix."""
    rowsum = np.array(adj.sum(1))  # D-degree matrix
    d_inv_sqrt = np.power(rowsum, -0.5).flatten()
    d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0
    d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
    return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt)


def _scipy_to_torch(sparse):
    sparse = sparse.tocoo() if sparse.getformat() != "coo" else sparse
    i = torch.LongTensor(np.vstack((sparse.row, sparse.col)))
    v = torch.from_numpy(sparse.data)
    return torch.sparse_coo_tensor(i, v, torch.Size(sparse.shape)).coalesce()


def _delete_special_terms(words: list, terms: set):
    return set([w for w in words if w not in terms])


def _build_pmi_graph(
    texts: List[str],
    tokenizer: PreTrainedTokenizerBase,
    window_size=20,
    algorithm="npmi",
    edge_threshold=0.0,
    remove_stopwords=False,
    min_freq_to_keep=2,
) -> Tuple[sp.csr_matrix, Dict[str, int], Dict[int, int]]:
    """
    Build statistical word graph from text samples using PMI or NPMI algorithm.
    """

    # Tokenize the text samples. The tokenizer should be same as that in the combined Bert-like model.
    # Remove stopwords and special terms
    # Get vocabulary and the word frequency
    words_to_remove = (
        set({"[CLS]", "[SEP]"}).union(ENGLISH_STOP_WORDS) if remove_stopwords else set({"[CLS]", "[SEP]"})
    )
    vocab_counter = Counter()
    texts_words = []
    for t in texts:
        words = tokenizer.tokenize(t)
        words = _delete_special_terms(words, words_to_remove)
        if len(words) > 0:
            vocab_counter.update(Counter(words))
            texts_words.append(words)

    # Set [PAD] as the head of vocabulary
    # Remove word with freq<n and re generate texts
    new_vocab_counter = Counter({"[PAD]": 0})
    new_vocab_counter.update(
        Counter({k: v for k, v in vocab_counter.items() if v >= min_freq_to_keep})
        if min_freq_to_keep > 1
        else vocab_counter
    )
    vocab_counter = new_vocab_counter

    # Generate new texts by removing words with freq<n
    if min_freq_to_keep > 1:
        texts_words = [list(filter(lambda w: vocab_counter[w] >= min_freq_to_keep, words)) for words in texts_words]
    texts = [" ".join(words).strip() for words in texts_words if len(words) > 0]

    vocab_size = len(vocab_counter)
    vocab = list(vocab_counter.keys())
    assert vocab[0] == "[PAD]"
    vocab_indices = {k: i for i, k in enumerate(vocab)}

    # Get the pieces from sliding windows
    windows = []
    for t in texts:
        words = t.split()
        word_ids = [vocab_indices[w] for w in words]
        length = len(word_ids)
        if length <= window_size:
            windows.append(word_ids)
        else:
            for j in range(length - window_size + 1):
                word_ids = word_ids[j : j + window_size]
                windows.append(word_ids)

    # Get the window-count that every word appeared (count 1 for the same window).
    # Get window-count that every word-pair appeared (count 1 for the same window).
    vocab_window_counter = Counter()
    word_pair_window_counter = Counter()
    for word_ids in windows:
        word_ids = list(set(word_ids))
        vocab_window_counter.update(Counter(word_ids))
        word_pair_window_counter.update(
            Counter(
                [
                    f(i, j)
                    # (word_ids[i], word_ids[j])
                    for i in range(1, len(word_ids))
                    for j in range(i)
                    # adding inverse pair
                    for f in (lambda x, y: (word_ids[x], word_ids[y]), lambda x, y: (word_ids[y], word_ids[x]))
                ]
            )
        )

    # Calculate NPMI
    vocab_adj_row = []
    vocab_adj_col = []
    vocab_adj_weight = []

    total_windows = len(windows)
    for wid_pair in word_pair_window_counter.keys():
        i, j = wid_pair
        pair_count = word_pair_window_counter[wid_pair]
        i_count = vocab_window_counter[i]
        j_count = vocab_window_counter[j]
        value = (
            (log(1.0 * i_count * j_count / (total_windows**2)) / log(1.0 * pair_count / total_windows) - 1)
            if algorithm == "npmi"
            else (log((1.0 * pair_count / total_windows) / (1.0 * i_count * j_count / (total_windows**2))))
        )
        if value > edge_threshold:
            vocab_adj_row.append(i)
            vocab_adj_col.append(j)
            vocab_adj_weight.append(value)

    # Build vocabulary adjacency matrix
    vocab_adj = sp.csr_matrix(
        (vocab_adj_weight, (vocab_adj_row, vocab_adj_col)),
        shape=(vocab_size, vocab_size),
        dtype=np.float32,
    )
    vocab_adj.setdiag(1.0)

    # Padding the first row and column, "[PAD]" is the first word in the vocabulary.
    assert vocab_adj[0, :].sum() == 1
    assert vocab_adj[:, 0].sum() == 1
    vocab_adj[:, 0] = 0
    vocab_adj[0, :] = 0

    wgraph_id_to_tokenizer_id_map = {v: tokenizer.vocab[k] for k, v in vocab_indices.items()}
    wgraph_id_to_tokenizer_id_map = dict(sorted(wgraph_id_to_tokenizer_id_map.items()))

    return (
        vocab_adj,
        vocab_indices,
        wgraph_id_to_tokenizer_id_map,
    )


def _build_predefined_graph(
    words_relations: List[Tuple[str, str, float]], tokenizer: PreTrainedTokenizerBase, remove_stopwords: bool = False
) -> Tuple[sp.csr_matrix, Dict[str, int], Dict[int, int]]:
    """
    Build pre-defined wgraph from a list of word pairs and their pre-defined relations (edge value).
    """

    # Tokenize the text samples. The tokenizer should be same as that in the combined Bert-like model.
    # Remove stopwords and special terms
    # Get vocabulary and the word frequency
    words_to_remove = (
        set({"[CLS]", "[SEP]"}).union(ENGLISH_STOP_WORDS) if remove_stopwords else set({"[CLS]", "[SEP]"})
    )
    vocab_counter = Counter({"[PAD]": 0})
    word_pairs = {}
    for w1, w2, v in words_relations:
        w1_subwords = tokenizer.tokenize(w1)
        w1_subwords = _delete_special_terms(w1_subwords, words_to_remove)
        w2_subwords = tokenizer.tokenize(w2)
        w2_subwords = _delete_special_terms(w2_subwords, words_to_remove)
        vocab_counter.update(Counter(w1_subwords))
        vocab_counter.update(Counter(w2_subwords))
        for sw1 in w1_subwords:
            for sw2 in w2_subwords:
                if sw1 != sw2:
                    word_pairs.setdefault((sw1, sw2), v)

    vocab_size = len(vocab_counter)
    vocab = list(vocab_counter.keys())
    assert vocab[0] == "[PAD]"
    vocab_indices = {k: i for i, k in enumerate(vocab)}

    # bulid adjacency matrix
    vocab_adj_row = []
    vocab_adj_col = []
    vocab_adj_weight = []
    for (w1, w2), v in word_pairs.items():
        vocab_adj_row.append(vocab_indices[w1])
        vocab_adj_col.append(vocab_indices[w2])
        vocab_adj_weight.append(v)
        # adding inverse
        vocab_adj_row.append(vocab_indices[w2])
        vocab_adj_col.append(vocab_indices[w1])
        vocab_adj_weight.append(v)

    # Build vocabulary adjacency matrix
    vocab_adj = sp.csr_matrix(
        (vocab_adj_weight, (vocab_adj_row, vocab_adj_col)),
        shape=(vocab_size, vocab_size),
        dtype=np.float32,
    )
    vocab_adj.setdiag(1.0)

    # Padding the first row and column, "[PAD]" is the first word in the vocabulary.
    assert vocab_adj[0, :].sum() == 1
    assert vocab_adj[:, 0].sum() == 1
    vocab_adj[:, 0] = 0
    vocab_adj[0, :] = 0

    wgraph_id_to_tokenizer_id_map = {v: tokenizer.vocab[k] for k, v in vocab_indices.items()}
    wgraph_id_to_tokenizer_id_map = dict(sorted(wgraph_id_to_tokenizer_id_map.items()))

    return (
        vocab_adj,
        vocab_indices,
        wgraph_id_to_tokenizer_id_map,
    )


# TODO: build knowledge graph from a list of RDF triples


class WordGraphBuilder:
    """
    Word graph based on adjacency matrix, construct from text samples or pre-defined word-pair relations

    You may (or not) first preprocess the text before build the graph,
    e.g. Stopword removal, String cleaning, Stemming, Nomolization, Lemmatization

    Params:
        `rows`: List[str] of text samples, or pre-defined word-pair relations: List[Tuple[str, str, float]]
        `tokenizer`: The same pretrained tokenizer that is used for the model late.
        `window_size`:  Available only for statistics generation (rows is text samples).
            Size of the sliding window for collecting the pieces of text
            and further calculate the NPMI value, default is 20.
        `algorithm`:  Available only for statistics generation (rows is text samples) -- "npmi" or "pmi", default is "npmi".
        `edge_threshold`: Available only for statistics generation (rows is text samples). Graph edge value threshold, default is 0. Edge value is between -1 to 1.
        `remove_stopwords`: Build word graph with the words that are not stopwords, default is False.
        `min_freq_to_keep`: Available only for statistics generation (rows is text samples). Build word graph with the words that occurred at least n times in the corpus, default is 2.

    Properties:
        `adjacency_matrix`: scipy.sparse.csr_matrix, the word graph in sparse adjacency matrix form.
        `vocab_indices`: indices of word graph vocabulary words.
        `wgraph_id_to_tokenizer_id_map`: map from word graph vocabulary word id to tokenizer vocabulary word id.

    """

    def __init__(self):
        super().__init__()

    def __call__(
        self,
        rows: list,
        tokenizer: PreTrainedTokenizerBase,
        window_size=20,
        algorithm="npmi",
        edge_threshold=0.0,
        remove_stopwords=False,
        min_freq_to_keep=2,
    ):
        if type(rows[0]) == tuple:
            (
                adjacency_matrix,
                _,
                wgraph_id_to_tokenizer_id_map,
            ) = _build_predefined_graph(rows, tokenizer, remove_stopwords)
        else:
            (
                adjacency_matrix,
                _,
                wgraph_id_to_tokenizer_id_map,
            ) = _build_pmi_graph(
                rows, tokenizer, window_size, algorithm, edge_threshold, remove_stopwords, min_freq_to_keep
            )

        adjacency_matrix=_scipy_to_torch(_normalize_adj(adjacency_matrix)) if adjacency_matrix is not None else None
        return adjacency_matrix, wgraph_id_to_tokenizer_id_map



class VgcnParameterList(nn.ParameterList):
    def __init__(self, values=None, requires_grad=True) -> None:
        super().__init__(values)
        self.requires_grad = requires_grad

    def _load_from_state_dict(
        self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
    ):
        keys = filter(lambda x: x.startswith(prefix), state_dict.keys())
        for k in keys:
            self.append(nn.Parameter(state_dict[k], requires_grad=self.requires_grad))
        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        )
        for i in range(len(self)):
            if self[i].layout is torch.sparse_coo and not self[i].is_coalesced():
                self[i] = self[i].coalesce()
            self[i].requires_grad = self.requires_grad


class VocabGraphConvolution(nn.Module):
    """Vocabulary GCN module.

    Params:
        `wgraphs`: List of vocabulary graph, normally adjacency matrix
        `wgraph_id_to_tokenizer_id_maps`: wgraph.vocabulary to tokenizer.vocabulary id-mapping
        `hid_dim`: The hidden dimension after `GCN=XAW` (GCN layer)
        `out_dim`: The output dimension after `out=Relu(XAW)W`  (GCN output)
        `activation`: The activation function in `out=act(XAW)W`
        `dropout_rate`: The dropout probabilitiy in `out=dropout(act(XAW))W`.

    Inputs:
        `X_dv`: the feature of mini batch document, can be TF-IDF (batch, vocab), or word embedding (batch, word_embedding_dim, vocab)

    Outputs:
        The graph embedding representation, dimension (batch, `out_dim`) or (batch, word_embedding_dim, `out_dim`)

    """

    def __init__(
        self,
        hid_dim: int,
        out_dim: int,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
        activation=None,
        dropout_rate=0.1,
    ):
        super().__init__()
        self.hid_dim = hid_dim
        self.out_dim = out_dim
        self.fc_hg = nn.Linear(hid_dim, out_dim)
        self.fc_hg._is_vgcn_linear = True
        self.activation = get_activation(activation) if activation else None
        self.dropout = nn.Dropout(dropout_rate) if dropout_rate > 0 else None
        # TODO: add a Linear layer for vgcn fintune/pretrain task

        # after init.set_wgraphs, _init_weights will set again the mode (transparent,normal,uniform)
        # but if load wgraph parameters from checkpoint/pretrain, the mode weights will be updated from to checkpoint
        # you can call again set_parameters to change the mode
        self.set_wgraphs(wgraphs, wgraph_id_to_tokenizer_id_maps)

    def set_parameters(self, mode="transparent"):
        """Set the parameters of the model (transparent, uniform, normal)."""
        assert mode in ["transparent", "uniform", "normal"]
        for n, p in self.named_parameters():
            if n.startswith("W"):
                nn.init.constant_(p, 1.0) if mode == "transparent" else nn.init.normal_(
                    p, mean=0.0, std=0.02
                ) if mode == "normal" else nn.init.kaiming_uniform_(p, a=math.sqrt(5))
        self.fc_hg.weight.data.fill_(1.0) if mode == "transparent" else self.fc_hg.weight.data.normal_(
            mean=0.0, std=0.02
        ) if mode == "normal" else nn.init.kaiming_uniform_(self.fc_hg.weight, a=math.sqrt(5))
        self.fc_hg.bias.data.zero_()

    def set_wgraphs(
        self,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
        mode="transparent",
    ):
        assert (
            wgraphs is None
            and wgraph_id_to_tokenizer_id_maps is None
            or wgraphs is not None
            and wgraph_id_to_tokenizer_id_maps is not None
        )
        self.wgraphs: VgcnParameterList = (
            self._prepare_wgraphs(wgraphs) if wgraphs else VgcnParameterList(requires_grad=False)
        )
        self.gvoc_ordered_tokenizer_id_arrays, self.tokenizer_id_to_wgraph_id_arrays = VgcnParameterList(
            requires_grad=False
        ), VgcnParameterList(requires_grad=False)
        if wgraph_id_to_tokenizer_id_maps:
            (
                self.gvoc_ordered_tokenizer_id_arrays,
                self.tokenizer_id_to_wgraph_id_arrays,
            ) = self._prepare_inverted_arrays(wgraph_id_to_tokenizer_id_maps)
        self.W_vh_list = VgcnParameterList(requires_grad=True)
        self.W_vh_list._is_vgcn_weights = True
        for g in self.wgraphs:
            self.W_vh_list.append(nn.Parameter(torch.randn(g.shape[0], self.hid_dim)))
            # self.W_vh_list.append(nn.Parameter(torch.ones(g.shape[0], self.hid_dim)))
        self.set_parameters(mode=mode)

    def _prepare_wgraphs(self, wgraphs: list) -> VgcnParameterList:
        # def _zero_padding_graph(adj_matrix: torch.Tensor):
        #     if adj_matrix.layout is not torch.sparse_coo:
        #         adj_matrix=adj_matrix.to_sparse_coo()
        #     indices=adj_matrix.indices()+1
        #     padded_adj= torch.sparse_coo_tensor(indices=indices, values=adj_matrix.values(), size=(adj_matrix.shape[0]+1,adj_matrix.shape[1]+1))
        #     return padded_adj.coalesce()
        glist = VgcnParameterList(requires_grad=False)
        for g in wgraphs:
            assert g.layout is torch.sparse_coo
            # g[0,:] and g[:,0] should be 0
            assert 0 not in g.indices()
            glist.append(nn.Parameter(g.coalesce(), requires_grad=False))
        return glist

    def _prepare_inverted_arrays(self, wgraph_id_to_tokenizer_id_maps: List[dict]):
        wgraph_id_to_tokenizer_id_maps = [dict(sorted(m.items())) for m in wgraph_id_to_tokenizer_id_maps]
        assert all([list(m.keys())[-1] == len(m) - 1 for m in wgraph_id_to_tokenizer_id_maps])
        gvoc_ordered_tokenizer_id_arrays = VgcnParameterList(
            [
                nn.Parameter(torch.LongTensor(list(m.values())), requires_grad=False)
                for m in wgraph_id_to_tokenizer_id_maps
            ],
            requires_grad=False,
        )

        tokenizer_id_to_wgraph_id_arrays = VgcnParameterList(
            [
                nn.Parameter(torch.zeros(max(m.values()) + 1, dtype=torch.long), requires_grad=False)
                for m in wgraph_id_to_tokenizer_id_maps
            ],
            requires_grad=False,
        )
        for m, t in zip(wgraph_id_to_tokenizer_id_maps, tokenizer_id_to_wgraph_id_arrays):
            for graph_id, tok_id in m.items():
                t[tok_id] = graph_id

        return gvoc_ordered_tokenizer_id_arrays, tokenizer_id_to_wgraph_id_arrays

    def get_subgraphs(self, adj_matrix: torch.Tensor, gx_ids: torch.LongTensor):
        device = gx_ids.device
        batch_size = gx_ids.shape[0]
        batch_masks = torch.any(
            torch.any(
                (adj_matrix.indices().view(-1) == gx_ids.unsqueeze(-1)).view(batch_size, gx_ids.shape[1], 2, -1), dim=1
            ),
            dim=1,
        )
        nnz_len = len(adj_matrix.values())

        batch_values = adj_matrix.values().unsqueeze(0).repeat(batch_size, 1)
        batch_values = batch_values.view(-1)[batch_masks.view(-1)]

        batch_positions = torch.arange(batch_size, device=device).unsqueeze(1).repeat(1, nnz_len)
        indices = torch.cat([batch_positions.view(1, -1), adj_matrix.indices().repeat(1, batch_size)], dim=0)
        indices = indices[batch_masks.view(-1).expand(3, -1)].view(3, -1)

        batch_sub_adj_matrix = torch.sparse_coo_tensor(
            indices=indices,
            values=batch_values.view(-1),
            size=(batch_size, adj_matrix.size(0), adj_matrix.size(1)),
            dtype=adj_matrix.dtype,
            device=device,
        )

        return batch_sub_adj_matrix.coalesce()

    def forward(self, word_embeddings: nn.Embedding, input_ids: torch.Tensor):  # , position_ids: torch.Tensor = None):
        if not self.wgraphs:
            raise ValueError(
                "No wgraphs is provided. There are 3 ways to initalize wgraphs:"
                " instantiate VGCN_BERT with wgraphs, or call model.vgcn_bert.set_wgraphs(),"
                " or load from_pretrained/checkpoint (make sure there is wgraphs in checkpoint"
                " or you should call set_wgraphs)."
            )
        device = input_ids.device
        batch_size = input_ids.shape[0]
        word_emb_dim = word_embeddings.weight.shape[1]

        gx_ids_list = []
        # positon_embeddings_in_gvocab_order_list=[]
        for m in self.tokenizer_id_to_wgraph_id_arrays:
            # tmp_ids is still in sentence order, but value is graph id, e.g. [0, 5, 2, 2, 0, 10,0]
            # 0 means no correspond graph id (like padding in graph), so we need to replace it with 0
            tmp_ids = input_ids.clone()
            tmp_ids[tmp_ids > len(m) - 1] = 0
            tmp_ids = m[tmp_ids]

            # # position in graph is meaningless and computationally expensive
            # if position_ids:
            #     position_ids_in_g=torch.zeros(g.shape[0], dtype=torch.LongTensor)
            #     # maybe gcn_swop_eye in original vgcn_bert preprocess is more efficient?
            #     for p_id, g_id in zip(position_ids, tmp_ids):
            #         position_ids_in_g[g_id]=p_id
            #     position_embeddings_in_g=self.position_embeddings(position_ids_in_g)
            #     position_embeddings_in_g*=position_ids_in_g>0
            #     positon_embeddings_in_gvocab_order_list.append(position_embeddings_in_g)

            gx_ids_list.append(torch.unique(tmp_ids, dim=1))

        # G_embedding=(act(V1*A1_sub*W1_vh)+act(V2*A2_sub*W2_vh))*W_hg
        fused_H = torch.zeros((batch_size, word_emb_dim, self.hid_dim), device=device)
        for gv_ids, g, gx_ids, W_vh in zip(  # , position_in_gvocab_ev
            self.gvoc_ordered_tokenizer_id_arrays,
            self.wgraphs,
            gx_ids_list,
            self.W_vh_list,
            # positon_embeddings_in_gvocab_order_list,
        ):
            # batch_A1_sub*W1_vh, batch_A2_sub*W2_vh, ...
            sub_wgraphs = self.get_subgraphs(g, gx_ids)
            H_vh = torch.bmm(sub_wgraphs, W_vh.unsqueeze(0).expand(batch_size, *W_vh.shape))

            # V1*batch_A1_sub*W1_vh, V2*batch_A2_sub*W2_vh, ...
            gvocab_ev = word_embeddings(gv_ids).t()
            # if position_ids:
            #     gvocab_ev += position_in_gvocab_ev
            H_eh = gvocab_ev.matmul(H_vh)

            # fc -> act -> dropout
            if self.activation:
                H_eh = self.activation(H_eh)
            if self.dropout:
                H_eh = self.dropout(H_eh)

            fused_H += H_eh

        # fused_H=LayerNorm(fused_H) # embedding assemble layer will do LayerNorm
        out_ge = self.fc_hg(fused_H).transpose(1, 2)
        # self.dropout(out_ge) # embedding assemble layer will do dropout
        return out_ge


# UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE #

def create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
    if is_deepspeed_zero3_enabled():
        import deepspeed

        with deepspeed.zero.GatheredParameters(out, modifier_rank=0):
            if torch.distributed.get_rank() == 0:
                _create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)
    else:
        _create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)


def _create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
    position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
    out.requires_grad = False
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()


class VGCNEmbeddings(nn.Module):
    """Construct the embeddings from word, VGCN graph, position and token_type embeddings."""

    def __init__(
        self,
        config: PretrainedConfig,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
    ):
        super().__init__()

        self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)

        self.vgcn_graph_embds_dim = config.vgcn_graph_embds_dim
        self.vgcn = VocabGraphConvolution(
            hid_dim=config.vgcn_hidden_dim,
            out_dim=config.vgcn_graph_embds_dim,
            wgraphs=wgraphs,
            wgraph_id_to_tokenizer_id_maps=wgraph_id_to_tokenizer_id_maps,
            activation=config.vgcn_activation,
            dropout_rate=config.vgcn_dropout,
        )

        if config.sinusoidal_pos_embds:
            create_sinusoidal_embeddings(
                n_pos=config.max_position_embeddings, dim=config.dim, out=self.position_embeddings.weight
            )

        self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
        self.dropout = nn.Dropout(config.dropout)
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )

    def forward(self, input_ids: torch.Tensor, input_embeds: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Parameters:
            input_ids (torch.Tensor):
                torch.tensor(bs, max_seq_length) The token ids to embed.
                input_ids is mandatory in vgcn-bert.

        Returns: torch.tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type
        embeddings)
        """

        # input_ids is mandatory in vgcn-bert
        input_embeds = self.word_embeddings(input_ids)  # (bs, max_seq_length, dim)

        # device = input_embeds.device
        # input_lengths = (
        #     (input_ids > 0).sum(-1)
        #     if input_ids is not None
        #     else torch.ones(input_embeds.size(0), device=device, dtype=torch.int64) * input_embeds.size(1)
        # )

        seq_length = input_embeds.size(1)

        # Setting the position-ids to the registered buffer in constructor, it helps
        # when tracing the model without passing position-ids, solves
        # isues similar to issue #5664
        if hasattr(self, "position_ids"):
            position_ids = self.position_ids[:, :seq_length]
        else:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)  # (max_seq_length)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)  # (bs, max_seq_length)

        position_embeddings = self.position_embeddings(position_ids)  # (bs, max_seq_length, dim)

        embeddings = input_embeds + position_embeddings  # (bs, max_seq_length, dim)

        if self.vgcn_graph_embds_dim > 0:
            graph_embeds = self.vgcn(self.word_embeddings, input_ids)  # , position_ids)

            # vgcn_words_embeddings = input_embeds.clone()
            # for i in range(self.vgcn_graph_embds_dim):
            #     tmp_pos = (input_lengths - 2 - self.vgcn_graph_embds_dim + 1 + i) + torch.arange(
            #         0, input_embeds.shape[0]
            #     ).to(device) * input_embeds.shape[1]
            #     vgcn_words_embeddings.flatten(start_dim=0, end_dim=1)[tmp_pos, :] = graph_embeds[:, :, i]

            embeddings = torch.cat([embeddings, graph_embeds], dim=1)  # (bs, max_seq_length+graph_emb_dim_size, dim)

        embeddings = self.LayerNorm(embeddings)  # (bs, max_seq_length, dim)
        embeddings = self.dropout(embeddings)  # (bs, max_seq_length, dim)
        return embeddings


class MultiHeadSelfAttention(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = nn.Dropout(p=config.attention_dropout)

        # Have an even number of multi heads that divide the dimensions
        if self.dim % self.n_heads != 0:
            # Raise value errors for even multi-head attention nodes
            raise ValueError(f"self.n_heads: {self.n_heads} must divide self.dim: {self.dim} evenly")

        self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)

        self.pruned_heads: Set[int] = set()
        self.attention_head_size = self.dim // self.n_heads

    def prune_heads(self, heads: List[int]):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.n_heads, self.attention_head_size, self.pruned_heads
        )
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = self.attention_head_size * self.n_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        mask: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, ...]:
        """
        Parameters:
            query: torch.tensor(bs, seq_length, dim)
            key: torch.tensor(bs, seq_length, dim)
            value: torch.tensor(bs, seq_length, dim)
            mask: torch.tensor(bs, seq_length)

        Returns:
            weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
            seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
        """
        bs, q_length, dim = query.size()
        k_length = key.size(1)
        # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
        # assert key.size() == value.size()

        dim_per_head = self.dim // self.n_heads

        mask_reshp = (bs, 1, 1, k_length)

        def shape(x: torch.Tensor) -> torch.Tensor:
            """separate heads"""
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x: torch.Tensor) -> torch.Tensor:
            """group heads"""
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(query))  # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))  # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))  # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)  # (bs, n_heads, q_length, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))  # (bs, n_heads, q_length, k_length)
        mask = (mask == 0).view(mask_reshp).expand_as(scores)  # (bs, n_heads, q_length, k_length)
        scores = scores.masked_fill(
            mask, torch.tensor(torch.finfo(scores.dtype).min)
        )  # (bs, n_heads, q_length, k_length)

        weights = nn.functional.softmax(scores, dim=-1)  # (bs, n_heads, q_length, k_length)
        weights = self.dropout(weights)  # (bs, n_heads, q_length, k_length)

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

        context = torch.matmul(weights, v)  # (bs, n_heads, q_length, dim_per_head)
        context = unshape(context)  # (bs, q_length, dim)
        context = self.out_lin(context)  # (bs, q_length, dim)

        if output_attentions:
            return (context, weights)
        else:
            return (context,)


class FFN(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.dropout = nn.Dropout(p=config.dropout)
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
        self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
        self.activation = get_activation(config.activation)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)

    def ff_chunk(self, input: torch.Tensor) -> torch.Tensor:
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x)
        return x


class TransformerBlock(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()

        # Have an even number of Configure multi-heads
        if config.dim % config.n_heads != 0:
            raise ValueError(f"config.n_heads {config.n_heads} must divide config.dim {config.dim} evenly")

        self.attention = MultiHeadSelfAttention(config)
        self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

        self.ffn = FFN(config)
        self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

    def forward(
        self,
        x: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, ...]:
        """
        Parameters:
            x: torch.tensor(bs, seq_length, dim)
            attn_mask: torch.tensor(bs, seq_length)

        Returns:
            sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
            torch.tensor(bs, seq_length, dim) The output of the transformer block contextualization.
        """
        # Self-Attention
        sa_output = self.attention(
            query=x,
            key=x,
            value=x,
            mask=attn_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
        )
        if output_attentions:
            sa_output, sa_weights = sa_output  # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
        else:  # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
            if type(sa_output) != tuple:
                raise TypeError(f"sa_output must be a tuple but it is {type(sa_output)} type")

            sa_output = sa_output[0]
        sa_output = self.sa_layer_norm(sa_output + x)  # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output)  # (bs, seq_length, dim)
        ffn_output: torch.Tensor = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

        output = (ffn_output,)
        if output_attentions:
            output = (sa_weights,) + output
        return output


class Transformer(nn.Module):
    def __init__(self, config: PretrainedConfig):
        super().__init__()
        self.n_layers = config.n_layers
        self.layer = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)])

    def forward(
        self,
        x: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: Optional[bool] = None,
    ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:  # docstyle-ignore
        """
        Parameters:
            x: torch.tensor(bs, seq_length, dim) Input sequence embedded.
            attn_mask: torch.tensor(bs, seq_length) Attention mask on the sequence.

        Returns:
            hidden_state: torch.tensor(bs, seq_length, dim) Sequence of hidden states in the last (top)
            layer all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
                Tuple of length n_layers with the hidden states from each layer.
                Optional: only if output_hidden_states=True
            all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
                Tuple of length n_layers with the attention weights from each layer
                Optional: only if output_attentions=True
        """
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_state = x
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

            layer_outputs = layer_module(
                x=hidden_state, attn_mask=attn_mask, head_mask=head_mask[i], output_attentions=output_attentions
            )
            hidden_state = layer_outputs[-1]

            if output_attentions:
                if len(layer_outputs) != 2:
                    raise ValueError(f"The length of the layer_outputs should be 2, but it is {len(layer_outputs)}")

                attentions = layer_outputs[0]
                all_attentions = all_attentions + (attentions,)
            else:
                if len(layer_outputs) != 1:
                    raise ValueError(f"The length of the layer_outputs should be 1, but it is {len(layer_outputs)}")

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_state,)

        if not return_dict:
            return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
        )


# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
# Copied from transformers.models.distilbert.modeling_distilbert.DistilBertPreTrainedModel with DistilBert->VGCNBert,distilbert->vgcn_bert
class VGCNBertPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = VGCNBertConfig
    load_tf_weights = None
    base_model_prefix = "vgcn_bert"

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            if getattr(module, "_is_vgcn_linear", False):
                if self.config.vgcn_weight_init_mode == "transparent":
                    module.weight.data.fill_(1.0)
                elif self.config.vgcn_weight_init_mode == "normal":
                    module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
                elif self.config.vgcn_weight_init_mode == "uniform":
                    nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
                else:
                    raise ValueError(f"Unknown VGCN-BERT weight init mode: {self.config.vgcn_weight_init_mode}.")
                if module.bias is not None:
                    module.bias.data.zero_()
            else:
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
                if module.bias is not None:
                    module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.ParameterList):
            if getattr(module, "_is_vgcn_weights", False):
                for p in module:
                    if self.config.vgcn_weight_init_mode == "transparent":
                        nn.init.constant_(p, 1.0)
                    elif self.config.vgcn_weight_init_mode == "normal":
                        nn.init.normal_(p, mean=0.0, std=self.config.initializer_range)
                    elif self.config.vgcn_weight_init_mode == "uniform":
                        nn.init.kaiming_uniform_(p, a=math.sqrt(5))
                    else:
                        raise ValueError(f"Unknown VGCN-BERT weight init mode: {self.config.vgcn_weight_init_mode}.")


VGCNBERT_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`VGCNBertConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

VGCNBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare VGCN-BERT encoder/transformer outputting raw hidden-states without any specific head on top.",
    VGCNBERT_START_DOCSTRING,
)
# Copied from transformers.models.distilbert.modeling_distilbert.DistilBertModel with DISTILBERT->VGCNBERT,DistilBert->VGCNBert
class VGCNBertModel(VGCNBertPreTrainedModel):
    def __init__(
        self,
        config: PretrainedConfig,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
    ):
        super().__init__(config)

        self.embeddings = VGCNEmbeddings(config, wgraphs, wgraph_id_to_tokenizer_id_maps)  # Graph Embeddings
        self.transformer = Transformer(config)  # Encoder

        self.wgraph_builder = WordGraphBuilder()

        # Initialize weights and apply final processing
        self.post_init()

    def set_wgraphs(
        self,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
        mode="transparent",
    ):
        self.embeddings.vgcn.set_wgraphs(wgraphs, wgraph_id_to_tokenizer_id_maps, mode)

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings
        """
        return self.embeddings.position_embeddings

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
        Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.

        Arguments:
            new_num_position_embeddings (`int`):
                The number of new position embedding matrix. If position embeddings are learned, increasing the size
                will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
                end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
                size will add correct vectors at the end following the position encoding algorithm, whereas reducing
                the size will remove vectors from the end.
        """
        num_position_embeds_diff = new_num_position_embeddings - self.config.max_position_embeddings

        # no resizing needs to be done if the length stays the same
        if num_position_embeds_diff == 0:
            return

        logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
        self.config.max_position_embeddings = new_num_position_embeddings

        old_position_embeddings_weight = self.embeddings.position_embeddings.weight.clone()

        self.embeddings.position_embeddings = nn.Embedding(self.config.max_position_embeddings, self.config.dim)

        if self.config.sinusoidal_pos_embds:
            create_sinusoidal_embeddings(
                n_pos=self.config.max_position_embeddings, dim=self.config.dim, out=self.position_embeddings.weight
            )
        else:
            with torch.no_grad():
                if num_position_embeds_diff > 0:
                    self.embeddings.position_embeddings.weight[:-num_position_embeds_diff] = nn.Parameter(
                        old_position_embeddings_weight
                    )
                else:
                    self.embeddings.position_embeddings.weight = nn.Parameter(
                        old_position_embeddings_weight[:num_position_embeds_diff]
                    )
        # move position_embeddings to correct device
        self.embeddings.position_embeddings.to(self.device)

    def get_input_embeddings(self) -> nn.Embedding:
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, new_embeddings: nn.Embedding):
        self.embeddings.word_embeddings = new_embeddings

    def _prune_heads(self, heads_to_prune: Dict[int, List[List[int]]]):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.transformer.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(VGCNBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)  # (bs, seq_length)

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embeddings = self.embeddings(input_ids, inputs_embeds)  # (bs, seq_length, dim)

        if self.embeddings.vgcn_graph_embds_dim > 0:
            attention_mask = torch.cat(
                [attention_mask, torch.ones((input_shape[0], self.embeddings.vgcn_graph_embds_dim), device=device)],
                dim=1,
            )

        return self.transformer(
            x=embeddings,
            attn_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


@add_start_docstrings(
    """VGCNBert Model with a `masked language modeling` head on top.""",
    VGCNBERT_START_DOCSTRING,
)
# Copied from transformers.models.distilbert.modeling_distilbert.DistilBertForMaskedLM with DISTILBERT->VGCNBERT,DistilBert->VGCNBert,distilbert->vgcn_bert
class VGCNBertForMaskedLM(VGCNBertPreTrainedModel):
    _keys_to_ignore_on_load_missing = ["vocab_projector.weight"]

    def __init__(
        self,
        config: PretrainedConfig,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
    ):
        super().__init__(config)

        self.activation = get_activation(config.activation)

        self.vgcn_bert = VGCNBertModel(config, wgraphs, wgraph_id_to_tokenizer_id_maps)
        self.vocab_transform = nn.Linear(config.dim, config.dim)
        self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
        self.vocab_projector = nn.Linear(config.dim, config.vocab_size)

        # Initialize weights and apply final processing
        self.post_init()

        self.mlm_loss_fct = nn.CrossEntropyLoss()

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings
        """
        return self.vgcn_bert.get_position_embeddings()

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
        Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.

        Arguments:
            new_num_position_embeddings (`int`):
                The number of new position embedding matrix. If position embeddings are learned, increasing the size
                will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
                end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
                size will add correct vectors at the end following the position encoding algorithm, whereas reducing
                the size will remove vectors from the end.
        """
        self.vgcn_bert.resize_position_embeddings(new_num_position_embeddings)

    def get_output_embeddings(self) -> nn.Module:
        return self.vocab_projector

    def set_output_embeddings(self, new_embeddings: nn.Module):
        self.vocab_projector = new_embeddings

    @add_start_docstrings_to_model_forward(VGCNBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[MaskedLMOutput, Tuple[torch.Tensor, ...]]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        dlbrt_output = self.vgcn_bert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = dlbrt_output[0]  # (bs, seq_length, dim)
        prediction_logits = self.vocab_transform(hidden_states)  # (bs, seq_length, dim)
        prediction_logits = self.activation(prediction_logits)  # (bs, seq_length, dim)
        prediction_logits = self.vocab_layer_norm(prediction_logits)  # (bs, seq_length, dim)
        prediction_logits = self.vocab_projector(prediction_logits)  # (bs, seq_length, vocab_size)

        # remove graph embedding outputs
        prediction_logits = prediction_logits[:, : input_ids.size(1), :]

        mlm_loss = None
        if labels is not None:
            mlm_loss = self.mlm_loss_fct(prediction_logits.reshape(-1, prediction_logits.size(-1)), labels.view(-1))

        if not return_dict:
            output = (prediction_logits,) + dlbrt_output[1:]
            return ((mlm_loss,) + output) if mlm_loss is not None else output

        return MaskedLMOutput(
            loss=mlm_loss,
            logits=prediction_logits,
            hidden_states=dlbrt_output.hidden_states,
            attentions=dlbrt_output.attentions,
        )


@add_start_docstrings(
    """
    VGCNBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """,
    VGCNBERT_START_DOCSTRING,
)
# Copied from transformers.models.distilbert.modeling_distilbert.DistilBertForSequenceClassification with DISTILBERT->VGCNBERT,DistilBert->VGCNBert,distilbert->vgcn_bert
class VGCNBertForSequenceClassification(VGCNBertPreTrainedModel):
    def __init__(
        self,
        config: PretrainedConfig,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
    ):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.vgcn_bert = VGCNBertModel(config, wgraphs, wgraph_id_to_tokenizer_id_maps)
        self.pre_classifier = nn.Linear(config.dim, config.dim)
        self.classifier = nn.Linear(config.dim, config.num_labels)
        self.dropout = nn.Dropout(config.seq_classif_dropout)

        # Initialize weights and apply final processing
        self.post_init()

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings
        """
        return self.vgcn_bert.get_position_embeddings()

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
        Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.

        Arguments:
            new_num_position_embeddings (`int`):
                The number of new position embedding matrix. If position embeddings are learned, increasing the size
                will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
                end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
                size will add correct vectors at the end following the position encoding algorithm, whereas reducing
                the size will remove vectors from the end.
        """
        self.vgcn_bert.resize_position_embeddings(new_num_position_embeddings)

    @add_start_docstrings_to_model_forward(VGCNBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor, ...]]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vgcn_bert_output = self.vgcn_bert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_state = vgcn_bert_output[0]  # (bs, seq_len, dim)
        pooled_output = hidden_state[:, 0]  # (bs, dim)
        pooled_output = self.pre_classifier(pooled_output)  # (bs, dim)
        pooled_output = nn.ReLU()(pooled_output)  # (bs, dim)
        pooled_output = self.dropout(pooled_output)  # (bs, dim)
        logits = self.classifier(pooled_output)  # (bs, num_labels)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + vgcn_bert_output[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=vgcn_bert_output.hidden_states,
            attentions=vgcn_bert_output.attentions,
        )


@add_start_docstrings(
    """
    VGCNBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
    linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    VGCNBERT_START_DOCSTRING,
)
# Copied from transformers.models.distilbert.modeling_distilbert.DistilBertForQuestionAnswering with DISTILBERT->VGCNBERT,DistilBert->VGCNBert,distilbert->vgcn_bert
class VGCNBertForQuestionAnswering(VGCNBertPreTrainedModel):
    def __init__(
        self,
        config: PretrainedConfig,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
    ):
        super().__init__(config)

        self.vgcn_bert = VGCNBertModel(config, wgraphs, wgraph_id_to_tokenizer_id_maps)
        self.qa_outputs = nn.Linear(config.dim, config.num_labels)
        if config.num_labels != 2:
            raise ValueError(f"config.num_labels should be 2, but it is {config.num_labels}")

        self.dropout = nn.Dropout(config.qa_dropout)

        # Initialize weights and apply final processing
        self.post_init()

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings
        """
        return self.vgcn_bert.get_position_embeddings()

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
        Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.

        Arguments:
            new_num_position_embeddings (`int`):
                The number of new position embedding matrix. If position embeddings are learned, increasing the size
                will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
                end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
                size will add correct vectors at the end following the position encoding algorithm, whereas reducing
                the size will remove vectors from the end.
        """
        self.vgcn_bert.resize_position_embeddings(new_num_position_embeddings)

    @add_start_docstrings_to_model_forward(VGCNBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        start_positions: Optional[torch.Tensor] = None,
        end_positions: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[QuestionAnsweringModelOutput, Tuple[torch.Tensor, ...]]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vgcn_bert_output = self.vgcn_bert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = vgcn_bert_output[0]  # (bs, max_query_len, dim)

        hidden_states = self.dropout(hidden_states)  # (bs, max_query_len, dim)
        logits = self.qa_outputs(hidden_states)  # (bs, max_query_len, 2)
        # remove graph embedding outputs
        logits = logits[:, : input_ids.size(1), :]

        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()  # (bs, max_query_len)
        end_logits = end_logits.squeeze(-1).contiguous()  # (bs, max_query_len)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + vgcn_bert_output[1:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=vgcn_bert_output.hidden_states,
            attentions=vgcn_bert_output.attentions,
        )


@add_start_docstrings(
    """
    VGCNBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
    for Named-Entity-Recognition (NER) tasks.
    """,
    VGCNBERT_START_DOCSTRING,
)
# Copied from transformers.models.distilbert.modeling_distilbert.DistilBertForTokenClassification with DISTILBERT->VGCNBERT,DistilBert->VGCNBert,distilbert->vgcn_bert
class VGCNBertForTokenClassification(VGCNBertPreTrainedModel):
    def __init__(
        self,
        config: PretrainedConfig,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
    ):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.vgcn_bert = VGCNBertModel(config, wgraphs, wgraph_id_to_tokenizer_id_maps)
        self.dropout = nn.Dropout(config.dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings
        """
        return self.vgcn_bert.get_position_embeddings()

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
        Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.

        Arguments:
            new_num_position_embeddings (`int`):
                The number of new position embedding matrix. If position embeddings are learned, increasing the size
                will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
                end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
                size will add correct vectors at the end following the position encoding algorithm, whereas reducing
                the size will remove vectors from the end.
        """
        self.vgcn_bert.resize_position_embeddings(new_num_position_embeddings)

    @add_start_docstrings_to_model_forward(VGCNBERT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[TokenClassifierOutput, Tuple[torch.Tensor, ...]]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.vgcn_bert(
            input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        # remove graph embedding outputs
        logits = logits[:, : input_ids.size(1), :]

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    VGCNBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
    a softmax) e.g. for RocStories/SWAG tasks.
    """,
    VGCNBERT_START_DOCSTRING,
)
# Copied from transformers.models.distilbert.modeling_distilbert.DistilBertForMultipleChoice with DISTILBERT->VGCNBERT,DistilBert->VGCNBert,distilbert->vgcn_bert
class VGCNBertForMultipleChoice(VGCNBertPreTrainedModel):
    def __init__(
        self,
        config: PretrainedConfig,
        wgraphs: Optional[list] = None,
        wgraph_id_to_tokenizer_id_maps: Optional[List[dict]] = None,
    ):
        super().__init__(config)

        self.vgcn_bert = VGCNBertModel(config, wgraphs, wgraph_id_to_tokenizer_id_maps)
        self.pre_classifier = nn.Linear(config.dim, config.dim)
        self.classifier = nn.Linear(config.dim, 1)
        self.dropout = nn.Dropout(config.seq_classif_dropout)

        # Initialize weights and apply final processing
        self.post_init()

    def get_position_embeddings(self) -> nn.Embedding:
        """
        Returns the position embeddings
        """
        return self.vgcn_bert.get_position_embeddings()

    def resize_position_embeddings(self, new_num_position_embeddings: int):
        """
        Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.

        Arguments:
            new_num_position_embeddings (`int`)
                The number of new position embeddings. If position embeddings are learned, increasing the size will add
                newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
                position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
                add correct vectors at the end following the position encoding algorithm, whereas reducing the size
                will remove vectors from the end.
        """
        self.vgcn_bert.resize_position_embeddings(new_num_position_embeddings)

    @add_start_docstrings_to_model_forward(
        VGCNBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
    )
    @replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[MultipleChoiceModelOutput, Tuple[torch.Tensor, ...]]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, VGCNBertForMultipleChoice
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("vgcn_bert-base-cased")
        >>> model = VGCNBertForMultipleChoice.from_pretrained("vgcn_bert-base-cased")

        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> choice0 = "It is eaten with a fork and a knife."
        >>> choice1 = "It is eaten while held in the hand."
        >>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

        >>> encoding = tokenizer([[prompt, choice0], [prompt, choice1]], return_tensors="pt", padding=True)
        >>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

        >>> # the linear classifier still needs to be trained
        >>> loss = outputs.loss
        >>> logits = outputs.logits
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.vgcn_bert(
            input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_state = outputs[0]  # (bs * num_choices, seq_len, dim)
        pooled_output = hidden_state[:, 0]  # (bs * num_choices, dim)
        pooled_output = self.pre_classifier(pooled_output)  # (bs * num_choices, dim)
        pooled_output = nn.ReLU()(pooled_output)  # (bs * num_choices, dim)
        pooled_output = self.dropout(pooled_output)  # (bs * num_choices, dim)
        logits = self.classifier(pooled_output)  # (bs * num_choices, 1)

        reshaped_logits = logits.view(-1, num_choices)  # (bs, num_choices)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )