File size: 7,424 Bytes
849f340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MAMBA configuration"""

import math

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)


class MambaConfig(PretrainedConfig):
    """
    This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the MAMBA
    [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50280):
            Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MambaModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the embeddings and hidden states.
        state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the model.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0):
            The id of the beginning of sentence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 0):
            The id of the end of sentence token in the vocabulary.
        expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
        conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
        use_bias (`bool`, *optional*, defaults to `False`):
            Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
        use_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the convolution layer of the mixer block.
        hidden_act (`str`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.1):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        residual_in_fp32 (`bool`, *optional*, defaults to `True`):
            Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
        time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
            Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
        time_step_scale (`float`, *optional*, defaults to 1.0):
            Scale used used to scale `dt_proj.bias`.
        time_step_min (`float`, *optional*, defaults to 0.001):
            Minimum `time_step` used to bound `dt_proj.bias`.
        time_step_max (`float`, *optional*, defaults to 0.1):
            Maximum `time_step` used to bound `dt_proj.bias`.
        time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
            Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
        time_step_floor (`float`, *optional*, defaults to 0.0001):
            Minimum clamping value of the `dt_proj.bias` layer initialization.
        rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
            Whether or not to rescale `out_proj` weights when initializing.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the cache should be used.
        use_mambapy (`bool`, *optional*, defaults to `False`):
            Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited.


    Example:

    ```python
    >>> from transformers import MambaConfig, MambaModel

    >>> # Initializing a Mamba configuration
    >>> configuration = MambaConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = MambaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "mamba"

    def __init__(
        self,
        vocab_size=50280,
        hidden_size=768,
        state_size=16,
        num_hidden_layers=32,
        layer_norm_epsilon=1e-5,
        pad_token_id=0,
        bos_token_id=0,
        eos_token_id=0,
        expand=2,
        conv_kernel=4,
        use_bias=False,
        use_conv_bias=True,
        hidden_act="silu",
        initializer_range=0.1,
        residual_in_fp32=True,
        time_step_rank="auto",
        time_step_scale=1.0,
        time_step_min=0.001,
        time_step_max=0.1,
        time_step_init_scheme="random",
        time_step_floor=1e-4,
        rescale_prenorm_residual=False,
        use_cache=True,
        use_mambapy=False,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.state_size = state_size
        self.num_hidden_layers = num_hidden_layers
        self.layer_norm_epsilon = layer_norm_epsilon
        self.conv_kernel = conv_kernel
        self.expand = expand
        self.intermediate_size = int(expand * self.hidden_size)
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.use_bias = use_bias
        self.use_conv_bias = use_conv_bias
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
        self.time_step_scale = time_step_scale
        self.time_step_min = time_step_min
        self.time_step_max = time_step_max
        self.time_step_init_scheme = time_step_init_scheme
        self.time_step_floor = time_step_floor
        self.rescale_prenorm_residual = rescale_prenorm_residual
        self.residual_in_fp32 = residual_in_fp32
        self.use_cache = use_cache
        self.use_mambapy = use_mambapy

        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)