zbigi's picture
End of training
94cac09 verified
|
raw
history blame
2.39 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: openai-community/gpt2
datasets:
  - financial_phrasebank
metrics:
  - accuracy
model-index:
  - name: gpt2-sentiment_analysis
    results: []

gpt2-sentiment_analysis

This model is a fine-tuned version of openai-community/gpt2 on the financial_phrasebank dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7017
  • Accuracy: {'accuracy': 0.8941548183254344}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 224 0.4513 {'accuracy': 0.8515007898894155}
No log 2.0 448 0.3301 {'accuracy': 0.8862559241706162}
0.2776 3.0 672 0.3686 {'accuracy': 0.8862559241706162}
0.2776 4.0 896 0.3920 {'accuracy': 0.8767772511848341}
0.198 5.0 1120 0.3815 {'accuracy': 0.8925750394944708}
0.198 6.0 1344 0.5228 {'accuracy': 0.8720379146919431}
0.1346 7.0 1568 0.5616 {'accuracy': 0.8846761453396524}
0.1346 8.0 1792 0.5480 {'accuracy': 0.9020537124802528}
0.0823 9.0 2016 0.6681 {'accuracy': 0.8957345971563981}
0.0823 10.0 2240 0.7017 {'accuracy': 0.8941548183254344}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1