sentiment_model / README.md
zanafi's picture
update model card README.md
71acd99
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - indonlu
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment_model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: indonlu
          type: indonlu
          config: emot
          split: validation
          args: emot
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7363636363636363
          - name: Precision
            type: precision
            value: 0.7397155596092384
          - name: Recall
            type: recall
            value: 0.7459489407651173
          - name: F1
            type: f1
            value: 0.741920437379511

sentiment_model

This model is a fine-tuned version of indolem/indobert-base-uncased on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7788
  • Accuracy: 0.7364
  • Precision: 0.7397
  • Recall: 0.7459
  • F1: 0.7419

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1939 1.0 221 0.8261 0.6932 0.7203 0.7034 0.7056
0.6866 2.0 442 0.7925 0.725 0.7378 0.7377 0.7346
0.4791 3.0 663 0.7788 0.7364 0.7397 0.7459 0.7419

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3