File size: 3,137 Bytes
703811e
 
 
 
 
 
 
 
 
 
 
8675aad
 
 
 
 
 
 
 
 
 
 
703811e
 
 
8675aad
703811e
 
 
 
8675aad
1977567
 
 
 
703811e
 
 
 
ac693dc
 
 
 
 
703811e
ac693dc
703811e
 
 
 
 
 
 
 
145adb7
 
 
 
 
 
 
765e3b9
59e7a3a
145adb7
703811e
 
 
 
 
 
 
 
 
 
 
 
145adb7
703811e
 
8675aad
145adb7
 
703811e
 
765e3b9
 
 
703811e
 
8675aad
703811e
 
8675aad
703811e
8675aad
703811e
 
 
 
 
 
8675aad
ac693dc
8675aad
703811e
 
ac693dc
703811e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import time
import os, sys

from pathlib import Path

from concrete.ml.deployment import FHEModelClient

import requests


def to_json(python_object):
    if isinstance(python_object, bytes):
        return {"__class__": "bytes", "__value__": list(python_object)}
    raise TypeError(repr(python_object) + " is not JSON serializable")


def from_json(python_object):
    if "__class__" in python_object:
        return bytes(python_object["__value__"])


API_URL = "https://puqif7goarh132kl.us-east-1.aws.endpoints.huggingface.cloud"
headers = {
    "Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
    "Content-Type": "application/json",
}


def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)

    if "error" in response:
        assert False, f"Got an error: {response=}"

    return response.json()


path_to_model = Path("compiled_model")

# Logistic regression in FHE
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

x, y = make_classification(n_samples=1000, class_sep=2, n_features=30, random_state=42)
_, X_test, _, Y_test = train_test_split(x, y, test_size=0.2, random_state=42)

# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)

# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()

# Save the key in the database
payload = {
    "inputs": "fake",
    "evaluation_keys": to_json(evaluation_keys),
    "method": "save_key",
}

uid = query(payload)["uid"]
print(f"Storing the key in the database under {uid=}")

# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = False
time_start = time.time()
duration = 0

for i in range(nb_samples):

    # Quantize the input and encrypt it
    encrypted_inputs = fhemodel_client.quantize_encrypt_serialize([X_test[i]])

    # Prepare the payload
    payload = {
        "inputs": "fake",
        "encrypted_inputs": to_json(encrypted_inputs),
        "method": "inference",
        "uid": uid,
    }

    if verbose or True:
        print(f"Size of the payload: {sys.getsizeof(payload) / 1024} kilobytes")

    # Run the inference on HF servers
    duration -= time.time()
    duration_inference = -time.time()
    encrypted_prediction = query(payload)
    duration += time.time()
    duration_inference += time.time()

    encrypted_prediction = from_json(encrypted_prediction)

    # Decrypt the result and dequantize
    prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
    prediction = np.argmax(prediction_proba)

    if verbose or True:
        print(
            f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference:.3f} seconds"
        )

    # Measure accuracy
    nb_good += Y_test[i] == prediction

print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start} seconds")
print(f"Duration in inferences: {duration} seconds")
print(f"Duration per inference: {duration / nb_samples} seconds")