File size: 68,583 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
#import collections
import collections.abc as collections
import cv2
import math
import numpy as np
import numbers
import random
import torch
from imgaug import augmenters as iaa
import matplotlib
import matplotlib.cm
import mono.utils.weather_aug_utils as wa

"""
Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default)
for image manipulation.
"""

class Compose(object):
    # Composes transforms: transforms.Compose([transforms.RandScale([0.5, 2.0]), transforms.ToTensor()])
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        for t in self.transforms:
            images, labels, intrinsics, cam_models, normals, other_labels, transform_paras = t(images, labels, intrinsics, cam_models, normals, other_labels, transform_paras)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras

class ToTensor(object):
    # Converts numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W).
    def __init__(self,  **kwargs):
        return
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        if not isinstance(images, list) or not isinstance(labels, list) or not isinstance(intrinsics, list):
            raise (RuntimeError("transform.ToTensor() only handle inputs/labels/intrinsics lists."))
        if len(images) != len(intrinsics):
            raise (RuntimeError("Numbers of images and intrinsics are not matched."))
        if not isinstance(images[0], np.ndarray) or not isinstance(labels[0], np.ndarray):
            raise (RuntimeError("transform.ToTensor() only handle np.ndarray for the input and label."
                                "[eg: data readed by cv2.imread()].\n"))
        if  not isinstance(intrinsics[0], list):
            raise (RuntimeError("transform.ToTensor() only handle list for the camera intrinsics"))

        if len(images[0].shape) > 3 or len(images[0].shape) < 2:
            raise (RuntimeError("transform.ToTensor() only handle image(np.ndarray) with 3 dims or 2 dims.\n"))
        if len(labels[0].shape) > 3 or len(labels[0].shape) < 2:
            raise (RuntimeError("transform.ToTensor() only handle label(np.ndarray) with 3 dims or 2 dims.\n"))

        if len(intrinsics[0]) >4 or len(intrinsics[0]) < 3:
            raise (RuntimeError("transform.ToTensor() only handle intrinsic(list) with 3 sizes or 4 sizes.\n"))
        
        for i, img in enumerate(images):
            if len(img.shape) == 2:
                img = np.expand_dims(img, axis=2)
            images[i] = torch.from_numpy(img.transpose((2, 0, 1))).float()
        for i, lab in enumerate(labels):
            if len(lab.shape) == 2:
                lab = np.expand_dims(lab, axis=0)
            labels[i] = torch.from_numpy(lab).float()
        for i, intrinsic in enumerate(intrinsics):
            if len(intrinsic) == 3:
                intrinsic = [intrinsic[0],] + intrinsic
            intrinsics[i] = torch.tensor(intrinsic, dtype=torch.float)
        if cam_models is not None:
            for i, cam_model in enumerate(cam_models):
                cam_models[i] = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() if cam_model is not None else None
        if normals is not None:
            for i, normal in enumerate(normals):
                normals[i] = torch.from_numpy(normal.transpose((2, 0, 1))).float()
        if other_labels is not None:
            for i, lab in enumerate(other_labels):
                if len(lab.shape) == 2:
                    lab = np.expand_dims(lab, axis=0)
                other_labels[i] = torch.from_numpy(lab).float()
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras

class Normalize(object):
    # Normalize tensor with mean and standard deviation along channel: channel = (channel - mean) / std
    def __init__(self, mean, std=None, **kwargs):
        if std is None:
            assert len(mean) > 0
        else:
            assert len(mean) == len(std)
        self.mean = torch.tensor(mean).float()[:, None, None]
        self.std = torch.tensor(std).float()[:, None, None] if std is not None \
            else torch.tensor([1.0, 1.0, 1.0]).float()[:, None, None]

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        # if self.std is None:
        #     # for t, m in zip(image, self.mean):
        #     #     t.sub(m)
        #     image = image - self.mean
        #     if ref_images is not None:
        #         for i, ref_i in enumerate(ref_images):
        #             ref_images[i] =  ref_i - self.mean
        # else:
        #     # for t, m, s in zip(image, self.mean, self.std):
        #     #     t.sub(m).div(s)
        #     image = (image - self.mean) / self.std
        #     if ref_images is not None:
        #         for i, ref_i in enumerate(ref_images):
        #             ref_images[i] =  (ref_i - self.mean) / self.std
        for i, img in enumerate(images):
            img = torch.div((img - self.mean), self.std)
            images[i] = img
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras

class ResizeCanonical(object):
    """
    Resize the input to the canonical space first, then resize the input with random sampled size.
    In the first stage, we assume the distance holds while the camera model varies. 
    In the second stage, we aim to simulate the observation in different distance. The camera will move along the optical axis.
    Args:
        images: list of RGB images.
        labels: list of depth/disparity labels.
        other labels: other labels, such as instance segmentations, semantic segmentations...
    """
    def __init__(self, **kwargs):
        self.ratio_range = kwargs['ratio_range']
        self.canonical_focal = kwargs['focal_length']
        self.crop_size = kwargs['crop_size']
    
    def random_on_canonical_transform(self, image, label, intrinsic, cam_model, to_random_ratio):
        ori_h, ori_w, _ = image.shape
        ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0

        to_canonical_ratio = self.canonical_focal / ori_focal
        to_scale_ratio = to_random_ratio
        resize_ratio = to_canonical_ratio * to_random_ratio
        reshape_h = int(ori_h * resize_ratio + 0.5)
        reshape_w = int(ori_w * resize_ratio + 0.5)

        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        if intrinsic is not None:
            intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio]
        if label is not None:
            # number of other labels may be less than that of image
            label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            # scale the label and camera intrinsics
            label = label / to_scale_ratio
        
        if cam_model is not None:
            # Should not directly resize the cam_model.
            # Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. 
            # cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
        
        return image, label, intrinsic, cam_model, to_scale_ratio       
    
    def random_on_crop_transform(self, image, label, intrinsic, cam_model, to_random_ratio):
        ori_h, ori_w, _ = image.shape
        crop_h, crop_w = self.crop_size
        ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0

        to_canonical_ratio = self.canonical_focal / ori_focal
        
        # random resize based on the last crop size
        proposal_reshape_h = int(crop_h * to_random_ratio + 0.5) 
        proposal_reshape_w = int(crop_w * to_random_ratio + 0.5)
        resize_ratio_h = proposal_reshape_h / ori_h
        resize_ratio_w = proposal_reshape_w / ori_w
        resize_ratio = min(resize_ratio_h, resize_ratio_w) # resize based on the long edge
        reshape_h = int(ori_h * resize_ratio + 0.5)
        reshape_w = int(ori_w * resize_ratio + 0.5)
        
        to_scale_ratio = resize_ratio / to_canonical_ratio        

        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        if intrinsic is not None:
            intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio]
        if label is not None:
            # number of other labels may be less than that of image
            label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            # scale the label and camera intrinsics
            label = label / to_scale_ratio
        
        if cam_model is not None:
            # Should not directly resize the cam_model.
            # Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. 
            # cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
        return image, label, intrinsic, cam_model, to_scale_ratio       

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
        assert labels[0].dtype == np.float
        target_focal = (intrinsics[0][0] + intrinsics[0][1]) / 2.0
        target_to_canonical_ratio = self.canonical_focal / target_focal
        target_img_shape = images[0].shape
        to_random_ratio = random.uniform(self.ratio_range[0], self.ratio_range[1])
        to_scale_ratio = 0.0
        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i] if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model, to_scale_ratio = self.random_on_canonical_transform(
                img, label, intrinsic, cam_model, to_random_ratio)
                
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model 

        if normals != None:
            reshape_h, reshape_w, _ = images[0].shape
            for i, normal in enumerate(normals):
                normals[i] = cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
                
        if other_labels != None: 
            # other labels are like semantic segmentations, instance segmentations, instance planes segmentations...           
            #resize_ratio = target_to_canonical_ratio * to_scale_ratio
            #reshape_h = int(target_img_shape[0] * resize_ratio + 0.5)
            #reshape_w = int(target_img_shape[1] * resize_ratio + 0.5)
            reshape_h, reshape_w, _ = images[0].shape
            for i, other_label_i in enumerate(other_labels):
                other_labels[i] = cv2.resize(other_label_i, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
        
        if transform_paras is not None:
            transform_paras.update(label_scale_factor = 1.0/to_scale_ratio)

        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras


class LabelScaleCononical(object):
    """
    To solve the ambiguity observation for the mono branch, i.e. different focal length (object size) with the same depth, cameras are
    mapped to a cononical space. To mimic this, we set the focal length to a canonical one and scale the depth value. NOTE: resize the image based on the ratio can also solve this ambiguity.
    Args:
        images: list of RGB images.
        labels: list of depth/disparity labels.
        other labels: other labels, such as instance segmentations, semantic segmentations...
    """
    def __init__(self, **kwargs):
        self.canonical_focal = kwargs['focal_length']
    
    def _get_scale_ratio(self, intrinsic):
        target_focal_x = intrinsic[0]
        label_scale_ratio = self.canonical_focal / target_focal_x
        pose_scale_ratio = 1.0
        return label_scale_ratio, pose_scale_ratio
        
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
        #assert labels[0].dtype == np.float

        label_scale_ratio = None
        pose_scale_ratio = None
        
        for i in range(len(intrinsics)): 
            img_i = images[i]
            label_i = labels[i] if  i < len(labels) else None
            intrinsic_i = intrinsics[i].copy()
            cam_model_i = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            
            label_scale_ratio, pose_scale_ratio = self._get_scale_ratio(intrinsic_i)
            
            # adjust the focal length, map the current camera to the canonical space
            intrinsics[i] = [intrinsic_i[0]*label_scale_ratio, intrinsic_i[1]*label_scale_ratio, intrinsic_i[2], intrinsic_i[3]]
            
            # scale the label to the canonical space
            if label_i is not None:
                labels[i] = label_i * label_scale_ratio
                        
            if cam_model_i is not None:
                # As the focal length is adjusted (canonical focal length), the camera model should be re-built.
                ori_h, ori_w, _ = img_i.shape
                cam_models[i] = build_camera_model(ori_h, ori_w, intrinsics[i])
            
        
        if transform_paras is not None:
            transform_paras.update(label_scale_factor = label_scale_ratio)

        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras



class ResizeKeepRatio(object):
    """
    Resize and pad to a given size. Hold the aspect ratio.
    This resizing assumes that the camera model remains unchanged.
    Args:
        resize_size: predefined output size.
    """
    def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs):
        if isinstance(resize_size, int):
            self.resize_h = resize_size
            self.resize_w = resize_size
        elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \
                and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \
                and resize_size[0] > 0 and resize_size[1] > 0:
            self.resize_h = resize_size[0]
            self.resize_w = resize_size[1]
        else:
            raise (RuntimeError("crop size error.\n"))
        if padding is None:
            self.padding = padding
        elif isinstance(padding, list):
            if all(isinstance(i, numbers.Number) for i in padding):
                self.padding = padding
            else:
                raise (RuntimeError("padding in Crop() should be a number list\n"))
            if len(padding) != 3:
                raise (RuntimeError("padding channel is not equal with 3\n"))
        else:
            raise (RuntimeError("padding in Crop() should be a number list\n"))
        if isinstance(ignore_label, int):
            self.ignore_label = ignore_label
        else:
            raise (RuntimeError("ignore_label should be an integer number\n"))
        self.crop_size = kwargs['crop_size']
        self.canonical_focal = kwargs['focal_length']

    def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio):
        """
        Resize data first and then do the padding.
        'label' will be scaled.
        """
        h, w, _ = image.shape
        reshape_h = int(resize_ratio * h)
        reshape_w = int(resize_ratio * w)

        pad_h, pad_w, pad_h_half, pad_w_half = padding
        
        # resize
        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        # padding
        image = cv2.copyMakeBorder(
            image, 
            pad_h_half, 
            pad_h - pad_h_half, 
            pad_w_half, 
            pad_w - pad_w_half, 
            cv2.BORDER_CONSTANT, 
            value=self.padding)

        if label is not None:
            # label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            label = resize_depth_preserve(label, (reshape_h, reshape_w))
            label = cv2.copyMakeBorder(
                label, 
                pad_h_half, 
                pad_h - pad_h_half, 
                pad_w_half, 
                pad_w - pad_w_half, 
                cv2.BORDER_CONSTANT, 
                value=self.ignore_label)
            # scale the label
            label = label / to_scale_ratio
        
        # Resize, adjust principle point
        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] * resize_ratio
            intrinsic[3] = intrinsic[3] * resize_ratio

        if cam_model is not None:
            #cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
            cam_model = cv2.copyMakeBorder(
                cam_model, 
                pad_h_half, 
                pad_h - pad_h_half, 
                pad_w_half, 
                pad_w - pad_w_half, 
                cv2.BORDER_CONSTANT, 
                value=self.ignore_label)

        # Pad, adjust the principle point
        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] + pad_w_half
            intrinsic[3] = intrinsic[3] + pad_h_half
        return image, label, intrinsic, cam_model
    
    def get_label_scale_factor(self, image, intrinsic, resize_ratio):
        ori_h, ori_w, _ = image.shape
        crop_h, crop_w = self.crop_size
        ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0 #intrinsic[0] #

        to_canonical_ratio = self.canonical_focal / ori_focal
        to_scale_ratio = resize_ratio / to_canonical_ratio 
        return to_scale_ratio
        
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        target_h, target_w, _ = images[0].shape
        resize_ratio_h = self.resize_h / target_h
        resize_ratio_w = self.resize_w / target_w
        resize_ratio = min(resize_ratio_h, resize_ratio_w)
        reshape_h = int(resize_ratio * target_h)
        reshape_w = int(resize_ratio * target_w)
        pad_h = max(self.resize_h - reshape_h, 0)
        pad_w = max(self.resize_w - reshape_w, 0)
        pad_h_half = int(pad_h / 2)
        pad_w_half = int(pad_w / 2)
        
        pad_info = [pad_h, pad_w, pad_h_half, pad_w_half]
        to_scale_ratio = self.get_label_scale_factor(images[0], intrinsics[0], resize_ratio)

        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i] if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model = self.main_data_transform(
                img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio)
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model 
        
        if normals is not None:
            for i, normal in enumerate(normals):
                normal =  cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
                # pad
                normals[i] =  cv2.copyMakeBorder(
                    normal, 
                    pad_h_half, 
                    pad_h - pad_h_half, 
                    pad_w_half, 
                    pad_w - pad_w_half, 
                    cv2.BORDER_CONSTANT, 
                    value=0)

        if other_labels is not None:
            
            for i, other_lab in enumerate(other_labels):
                # resize
                other_lab =  cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
                # pad
                other_labels[i] =  cv2.copyMakeBorder(
                    other_lab, 
                    pad_h_half, 
                    pad_h - pad_h_half, 
                    pad_w_half, 
                    pad_w - pad_w_half, 
                    cv2.BORDER_CONSTANT, 
                    value=self.ignore_label)


        if transform_paras is not None:
            transform_paras.update(pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half])
            if 'label_scale_factor' in transform_paras:
                transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio
            else:
                transform_paras.update(label_scale_factor=1.0/to_scale_ratio)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras
    
class KeepResizeCanoSize(object):
    """
    Resize and pad to a given size. Hold the aspect ratio.
    This resizing assumes that the camera model remains unchanged.
    Args:
        resize_size: predefined output size.
    """
    def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs):
        if isinstance(resize_size, int):
            self.resize_h = resize_size
            self.resize_w = resize_size
        elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \
                and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \
                and resize_size[0] > 0 and resize_size[1] > 0:
            self.resize_h = resize_size[0]
            self.resize_w = resize_size[1]
        else:
            raise (RuntimeError("crop size error.\n"))
        if padding is None:
            self.padding = padding
        elif isinstance(padding, list):
            if all(isinstance(i, numbers.Number) for i in padding):
                self.padding = padding
            else:
                raise (RuntimeError("padding in Crop() should be a number list\n"))
            if len(padding) != 3:
                raise (RuntimeError("padding channel is not equal with 3\n"))
        else:
            raise (RuntimeError("padding in Crop() should be a number list\n"))
        if isinstance(ignore_label, int):
            self.ignore_label = ignore_label
        else:
            raise (RuntimeError("ignore_label should be an integer number\n"))
        self.crop_size = kwargs['crop_size']
        self.canonical_focal = kwargs['focal_length']

    def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio):
        """
        Resize data first and then do the padding.
        'label' will be scaled.
        """
        h, w, _ = image.shape
        reshape_h = int(resize_ratio * h)
        reshape_w = int(resize_ratio * w)

        pad_h, pad_w, pad_h_half, pad_w_half = padding
        
        # resize
        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        # padding
        image = cv2.copyMakeBorder(
            image, 
            pad_h_half, 
            pad_h - pad_h_half, 
            pad_w_half, 
            pad_w - pad_w_half, 
            cv2.BORDER_CONSTANT, 
            value=self.padding)

        if label is not None:
            # label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            label = resize_depth_preserve(label, (reshape_h, reshape_w))
            label = cv2.copyMakeBorder(
                label, 
                pad_h_half, 
                pad_h - pad_h_half, 
                pad_w_half, 
                pad_w - pad_w_half, 
                cv2.BORDER_CONSTANT, 
                value=self.ignore_label)
            # scale the label
            label = label / to_scale_ratio
        
        # Resize, adjust principle point
        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] * resize_ratio
            intrinsic[3] = intrinsic[3] * resize_ratio

        if cam_model is not None:
            #cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
            cam_model = cv2.copyMakeBorder(
                cam_model, 
                pad_h_half, 
                pad_h - pad_h_half, 
                pad_w_half, 
                pad_w - pad_w_half, 
                cv2.BORDER_CONSTANT, 
                value=self.ignore_label)

        # Pad, adjust the principle point
        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] + pad_w_half
            intrinsic[3] = intrinsic[3] + pad_h_half
        return image, label, intrinsic, cam_model
    
    # def get_label_scale_factor(self, image, intrinsic, resize_ratio):
    #     ori_h, ori_w, _ = image.shape
    #     crop_h, crop_w = self.crop_size
    #     ori_focal = intrinsic[0] #(intrinsic[0] + intrinsic[1]) / 2.0

    #     to_canonical_ratio = self.canonical_focal / ori_focal
    #     to_scale_ratio = resize_ratio / to_canonical_ratio 
    #     return to_scale_ratio
        
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        target_h, target_w, _ = images[0].shape
        ori_focal = intrinsics[0][0]
        to_canonical_ratio = self.canonical_focal / ori_focal 
        
        resize_ratio = to_canonical_ratio
        reshape_h = int(resize_ratio * target_h)
        reshape_w = int(resize_ratio * target_w)
        
        pad_h = 32 - reshape_h % 32
        pad_w = 32 - reshape_w % 32
        pad_h_half = int(pad_h / 2)
        pad_w_half = int(pad_w / 2)
        
        pad_info = [pad_h, pad_w, pad_h_half, pad_w_half]
        to_scale_ratio = 1.0

        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i] if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model = self.main_data_transform(
                img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio)
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model 
        
        if normals is not None:
            
            for i, normal in enumerate(normals):
                # resize
                normal =  cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
                # pad
                normals[i] =  cv2.copyMakeBorder(
                    normal, 
                    pad_h_half, 
                    pad_h - pad_h_half, 
                    pad_w_half, 
                    pad_w - pad_w_half, 
                    cv2.BORDER_CONSTANT, 
                    value=0)

        if other_labels is not None:
            
            for i, other_lab in enumerate(other_labels):
                # resize
                other_lab =  cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
                # pad
                other_labels[i] =  cv2.copyMakeBorder(
                    other_lab, 
                    pad_h_half, 
                    pad_h - pad_h_half, 
                    pad_w_half, 
                    pad_w - pad_w_half, 
                    cv2.BORDER_CONSTANT, 
                    value=self.ignore_label)


        if transform_paras is not None:
            transform_paras.update(pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half])
            if 'label_scale_factor' in transform_paras:
                transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio
            else:
                transform_paras.update(label_scale_factor=1.0/to_scale_ratio)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras


class RandomCrop(object):
    """Crops the given ndarray image (H*W*C or H*W).
    Args:
        size (sequence or int): Desired output size of the crop. If size is an
        int instead of sequence like (h, w), a square crop (size, size) is made.
    """
    def __init__(self, crop_size, crop_type='center', padding=None, ignore_label=-1, **kwargs):
        if isinstance(crop_size, int):
            self.crop_h = crop_size
            self.crop_w = crop_size
        elif isinstance(crop_size, collections.Iterable) and len(crop_size) == 2 \
                and isinstance(crop_size[0], int) and isinstance(crop_size[1], int) \
                and crop_size[0] > 0 and crop_size[1] > 0:
            self.crop_h = crop_size[0]
            self.crop_w = crop_size[1]
        else:
            raise (RuntimeError("crop size error.\n"))
        if crop_type == 'center' or crop_type == 'rand' or crop_type=='rand_in_field':
            self.crop_type = crop_type
        else:
            raise (RuntimeError("crop type error: rand | center | rand_in_field \n"))
        if padding is None:
            self.padding = padding
        elif isinstance(padding, list):
            if all(isinstance(i, numbers.Number) for i in padding):
                self.padding = padding
            else:
                raise (RuntimeError("padding in Crop() should be a number list\n"))
            if len(padding) != 3:
                raise (RuntimeError("padding channel is not equal with 3\n"))
        else:
            raise (RuntimeError("padding in Crop() should be a number list\n"))
        if isinstance(ignore_label, int):
            self.ignore_label = ignore_label
        else:
            raise (RuntimeError("ignore_label should be an integer number\n"))
        

    def cal_padding_paras(self, h, w):
        # padding if current size is not satisfied
        pad_h = max(self.crop_h - h, 0)
        pad_w = max(self.crop_w - w, 0)
        pad_h_half = int(pad_h / 2)
        pad_w_half = int(pad_w / 2)
        return pad_h, pad_w, pad_h_half, pad_w_half

    def cal_cropping_paras(self, h, w, intrinsic):
        u0 = intrinsic[2]
        v0 = intrinsic[3]
        if self.crop_type == 'rand':
            h_min = 0
            h_max = h - self.crop_h
            w_min = 0
            w_max = w - self.crop_w 
        elif self.crop_type == 'center':
            h_min = (h - self.crop_h) / 2
            h_max = (h - self.crop_h) / 2
            w_min = (w - self.crop_w) / 2
            w_max = (w - self.crop_w) / 2
        else: # rand in field
            h_min = min(max(0, v0 - 0.75*self.crop_h), h-self.crop_h)
            h_max = min(max(v0 - 0.25*self.crop_h, 0), h-self.crop_h)
            w_min = min(max(0, u0 - 0.75*self.crop_w), w-self.crop_w)
            w_max = min(max(u0 - 0.25*self.crop_w, 0), w-self.crop_w)
        
        h_off = random.randint(int(h_min), int(h_max))
        w_off = random.randint(int(w_min), int(w_max))
        return h_off, w_off
    
    def main_data_transform(self, image, label, intrinsic, cam_model,
        pad_h, pad_w, pad_h_half, pad_w_half, h_off, w_off):

        # padding if current size is not satisfied
        if pad_h > 0 or pad_w > 0:
            if self.padding is None:
                raise (RuntimeError("depthtransform.Crop() need padding while padding argument is None\n"))
            image = cv2.copyMakeBorder(image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.padding)
            if label is not None:
                label = cv2.copyMakeBorder(label, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label)
            if cam_model is not None:
                cam_model = cv2.copyMakeBorder(cam_model, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label)
        
        # cropping
        image = image[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w]
        if label is not None:
            label = label[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w]
        if cam_model is not None:
            cam_model = cam_model[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w]

        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] + pad_w_half - w_off
            intrinsic[3] = intrinsic[3] + pad_h_half - h_off    
        return image, label, intrinsic, cam_model

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        if 'random_crop_size' in transform_paras and transform_paras['random_crop_size'] is not None \
            and (transform_paras['random_crop_size'][0] + transform_paras['random_crop_size'][1] > 500):
            self.crop_h = int(transform_paras['random_crop_size'][0].item())
            self.crop_w = int(transform_paras['random_crop_size'][1].item())
        target_img = images[0]
        target_h, target_w, _ = target_img.shape
        target_intrinsic = intrinsics[0]
        pad_h, pad_w, pad_h_half, pad_w_half = self.cal_padding_paras(target_h, target_w)
        h_off, w_off = self.cal_cropping_paras(target_h+pad_h, target_w+pad_w, target_intrinsic)

        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i].copy() if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model = self.main_data_transform(
                img, label, intrinsic, cam_model,
                pad_h, pad_w, pad_h_half, pad_w_half, h_off, w_off)
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model 
        pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
        if normals is not None:           
            for i, normal  in enumerate(normals):
                # padding if current size is not satisfied
                normal = cv2.copyMakeBorder(normal, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=0)
                normals[i] = normal[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w]
        if other_labels is not None:           
            for i, other_lab  in enumerate(other_labels):
                # padding if current size is not satisfied
                other_lab = cv2.copyMakeBorder(other_lab, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label)
                other_labels[i] = other_lab[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w]
        if transform_paras is not None:
            transform_paras.update(dict(pad=pad))
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras
    

class RandomResize(object):
    """
    Random resize the image. During this process, the camera model is hold, and thus the depth label is scaled.
    Args:
        images: list of RGB images.
        labels: list of depth/disparity labels.
        other labels: other labels, such as instance segmentations, semantic segmentations...
    """
    def __init__(self, ratio_range=(0.85, 1.15), prob=0.5, is_lidar=True, **kwargs):
        self.ratio_range = ratio_range
        self.is_lidar = is_lidar
        self.prob = prob
    
    def random_resize(self, image, label, intrinsic, cam_model, to_random_ratio):
        ori_h, ori_w, _ = image.shape
        
        resize_ratio = to_random_ratio
        label_scale_ratio = 1.0 / resize_ratio
        reshape_h = int(ori_h * resize_ratio + 0.5)
        reshape_w = int(ori_w * resize_ratio + 0.5)

        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        if intrinsic is not None:
            intrinsic = [intrinsic[0], intrinsic[1], intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio]
        if label is not None:
            if self.is_lidar:
                label = resize_depth_preserve(label, (reshape_h, reshape_w))
            else:
                label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            # scale the label
            label = label * label_scale_ratio
        
        if cam_model is not None:
            # Should not directly resize the cam_model.
            # Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. 
            # cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
        
        return image, label, intrinsic, cam_model, label_scale_ratio       

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
        assert labels[0].dtype == np.float
        # target_focal = (intrinsics[0][0] + intrinsics[0][1]) / 2.0
        # target_to_canonical_ratio = self.canonical_focal / target_focal
        # target_img_shape = images[0].shape
        prob = random.uniform(0, 1)
        if prob < self.prob:
            to_random_ratio = random.uniform(self.ratio_range[0], self.ratio_range[1])
        else:
            to_random_ratio = 1.0
        label_scale_ratio = 0.0
        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i].copy() if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model, label_scale_ratio = self.random_resize(
                img, label, intrinsic, cam_model, to_random_ratio)
                
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic.copy()
            if cam_model is not None:
                cam_models[i] = cam_model 

        if normals != None: 
            reshape_h, reshape_w, _ = images[0].shape
            for i, norm in enumerate(normals):
                normals[i] = cv2.resize(norm, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)


        if other_labels != None: 
            # other labels are like semantic segmentations, instance segmentations, instance planes segmentations...           
            #resize_ratio = target_to_canonical_ratio * to_scale_ratio
            #reshape_h = int(target_img_shape[0] * resize_ratio + 0.5)
            #reshape_w = int(target_img_shape[1] * resize_ratio + 0.5)
            reshape_h, reshape_w, _ = images[0].shape
            for i, other_label_i in enumerate(other_labels):
                other_labels[i] = cv2.resize(other_label_i, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
        
        if transform_paras is not None:
            if 'label_scale_factor' in transform_paras:
                transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * label_scale_ratio
            else:
                transform_paras.update(label_scale_factor = label_scale_ratio)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras

class RandomEdgeMask(object):
    """
    Random mask the input and labels.
    Args:
        images: list of RGB images.
        labels: list of depth/disparity labels.
        other labels: other labels, such as instance segmentations, semantic segmentations...
    """
    def __init__(self, mask_maxsize=32, prob=0.5, rgb_invalid=[0,0,0], label_invalid=-1,**kwargs):
        self.mask_maxsize = mask_maxsize
        self.prob = prob
        self.rgb_invalid = rgb_invalid
        self.label_invalid = label_invalid
    
    def mask_edge(self, image, mask_edgesize, mask_value):
        H, W = image.shape[0], image.shape[1]
        # up
        image[0:mask_edgesize[0], :, ...] = mask_value 
        # down
        image[H-mask_edgesize[1]:H, :, ...] = mask_value
        # left
        image[:, 0:mask_edgesize[2], ...] = mask_value
        # right
        image[:, W-mask_edgesize[3]:W, ...] = mask_value
        
        return image

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
        assert labels[0].dtype == np.float
        
        prob = random.uniform(0, 1)
        if prob > self.prob:
            return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras
        
        mask_edgesize = random.sample(range(self.mask_maxsize), 4) #[up, down, left, right]
        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            img = self.mask_edge(img, mask_edgesize, self.rgb_invalid)
                
            images[i] = img
            if label is not None:
                label = self.mask_edge(label, mask_edgesize, self.label_invalid)
                labels[i] = label
        
        if normals != None:       
            for i, normal in enumerate(normals):
                normals[i] = self.mask_edge(normal, mask_edgesize, mask_value=0)

        if other_labels != None: 
            # other labels are like semantic segmentations, instance segmentations, instance planes segmentations...           
            for i, other_label_i in enumerate(other_labels):
                other_labels[i] = self.mask_edge(other_label_i, mask_edgesize, self.label_invalid)

        if transform_paras is not None:
            pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
            new_pad = [max(mask_edgesize[0], pad[0]), max(mask_edgesize[1], pad[1]), max(mask_edgesize[2], pad[2]), max(mask_edgesize[3], pad[3])]
            transform_paras.update(dict(pad=new_pad)) 
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras


class AdjustSize(object):
    """Crops the given ndarray image (H*W*C or H*W).
    Args:
        size (sequence or int): Desired output size of the crop. If size is an
        int instead of sequence like (h, w), a square crop (size, size) is made.
    """
    def __init__(self, padding=None, ignore_label=-1, **kwargs):
        
        if padding is None:
            self.padding = padding
        elif isinstance(padding, list):
            if all(isinstance(i, numbers.Number) for i in padding):
                self.padding = padding
            else:
                raise (RuntimeError("padding in Crop() should be a number list\n"))
            if len(padding) != 3:
                raise (RuntimeError("padding channel is not equal with 3\n"))
        else:
            raise (RuntimeError("padding in Crop() should be a number list\n"))
        if isinstance(ignore_label, int):
            self.ignore_label = ignore_label
        else:
            raise (RuntimeError("ignore_label should be an integer number\n"))
        
    def get_pad_paras(self, h, w):
        pad_h = 32 - h % 32 if h %32 != 0 else 0
        pad_w = 32 - w % 32 if w %32 != 0 else 0
        pad_h_half = int(pad_h // 2)
        pad_w_half = int(pad_w // 2)
        return pad_h, pad_w, pad_h_half, pad_w_half

    def main_data_transform(self, image, label, intrinsic, cam_model):
        h, w, _ = image.shape
        pad_h, pad_w, pad_h_half, pad_w_half = self.get_pad_paras(h=h, w=w)
        if pad_h > 0 or pad_w > 0:
            if self.padding is None:
                raise (RuntimeError("depthtransform.Crop() need padding while padding argument is None\n"))
            image = cv2.copyMakeBorder(image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.padding)
            if label is not None:
                label = cv2.copyMakeBorder(label, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label)
            if cam_model is not None:
                cam_model = cv2.copyMakeBorder(cam_model, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label)

        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] + pad_w_half
            intrinsic[3] = intrinsic[3] + pad_h_half
        pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
        return image, label, intrinsic, cam_model, pad
    
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        target_img = images[0]
        target_h, target_w, _ = target_img.shape
        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i] if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model, pad = self.main_data_transform(
                img, label, intrinsic, cam_model)
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model 

            if transform_paras is not None:
                transform_paras.update(dict(pad=pad))
        if normals is not None:
            pad_h, pad_w, pad_h_half, pad_w_half = self.get_pad_paras(h=target_h, w=target_w)
            for i, normal  in enumerate(normals):
                normals[i] = cv2.copyMakeBorder(normal, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=0)

        if other_labels is not None:
            pad_h, pad_w, pad_h_half, pad_w_half = self.get_pad_paras(h=target_h, w=target_w)
            for i, other_lab  in enumerate(other_labels):
                other_labels[i] = cv2.copyMakeBorder(other_lab, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras


class RandomHorizontalFlip(object):
    def __init__(self, prob=0.5, **kwargs):
        self.p = prob

    def main_data_transform(self, image, label, intrinsic, cam_model, rotate):
        if rotate:
            image = cv2.flip(image, 1)
            if label is not None:
                label = cv2.flip(label, 1)
            if intrinsic is not None:
                h, w, _ = image.shape
                intrinsic[2] = w - intrinsic[2]
                intrinsic[3] = h - intrinsic[3]
            if cam_model is not None:
                cam_model = cv2.flip(cam_model, 1)
                cam_model[:, :, 0] = cam_model[:, :, 0] * -1
                cam_model[:, :, 2] = cam_model[:, :, 2] * -1
        return image, label, intrinsic, cam_model
    
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        rotate = random.random() > self.p 

        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i] if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model = self.main_data_transform(
                img, label, intrinsic, cam_model, rotate)
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model 
        if normals is not None:
            for i, normal in enumerate(normals):
                if rotate:
                    normal = cv2.flip(normal, 1)
                    normal[:, :, 0] = -normal[:, :, 0] # NOTE: check the direction of normal coordinates axis, this is used in https://github.com/baegwangbin/surface_normal_uncertainty
                normals[i] = normal

        if other_labels is not None:
            for i, other_lab in enumerate(other_labels):
                if rotate:
                    other_lab = cv2.flip(other_lab, 1)
                other_labels[i] = other_lab
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras

class RandomBlur(object):
    def __init__(self, 
                 aver_kernal=(2, 10), 
                 motion_kernal=(5, 15), 
                 angle=[-80, 80], 
                 prob=0.3,
                 **kwargs):

        gaussian_blur = iaa.AverageBlur(k=aver_kernal)
        motion_blur = iaa.MotionBlur(k=motion_kernal, angle=angle)
        zoom_blur = iaa.imgcorruptlike.ZoomBlur(severity=1)
        self.prob = prob
        self.blurs = [gaussian_blur, motion_blur, zoom_blur]

    def blur(self, imgs, id):
        blur_mtd = self.blurs[id]
        return blur_mtd(images=imgs)

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        prob = random.random()
        if prob < self.prob:
            id = random.randint(0, len(self.blurs)-1)
            images = self.blur(images, id)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras

class RGBCompresion(object):
    def __init__(self, prob=0.1, compression=(0, 50), **kwargs):
        self.rgb_compress = iaa.Sequential(
            [
                iaa.JpegCompression(compression=compression),
            ],
            random_order=True,
        )
        self.prob = prob

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        if random.random() < self.prob:
            images = self.rgb_compress(images=images)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras


class RGB2BGR(object):
    # Converts image from RGB order to BGR order, for model initialized from Caffe
    def __init__(self,  **kwargs):
        return
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        for i, img in enumerate(images):
            images[i] = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras


class BGR2RGB(object):
    # Converts image from BGR order to RGB order, for model initialized from Pytorch
    def __init__(self,  **kwargs):
        return
    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        for i, img in enumerate(images):
            images[i] = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras


class PhotoMetricDistortion(object):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.
    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (tuple): range of contrast.
        saturation_range (tuple): range of saturation.
        hue_delta (int): delta of hue.
    """

    def __init__(self,
                 brightness_delta=32,
                 contrast_range=(0.5, 1.5),
                 saturation_range=(0.5, 1.5),
                 hue_delta=18,
                 to_gray_prob=0.3,
                 distortion_prob=0.3,
                 **kwargs):
        self.brightness_delta = brightness_delta
        self.contrast_lower, self.contrast_upper = contrast_range
        self.saturation_lower, self.saturation_upper = saturation_range
        self.hue_delta = hue_delta
        self.gray_aug = iaa.Grayscale(alpha=(0.8, 1.0))
        self.to_gray_prob = to_gray_prob
        self.distortion_prob = distortion_prob

    def convert(self, img, alpha=1.0, beta=0.0):
        """Multiple with alpha and add beat with clip."""
        img = img.astype(np.float32) * alpha + beta
        img = np.clip(img, 0, 255)
        return img.astype(np.uint8)

    def brightness(self, img, beta, do):
        """Brightness distortion."""
        if do:
            # beta = random.uniform(-self.brightness_delta,
            #                         self.brightness_delta)
            img = self.convert(
                img,
                beta=beta)
        return img

    def contrast(self, img, alpha, do):
        """Contrast distortion."""
        if do:
            #alpha = random.uniform(self.contrast_lower, self.contrast_upper)
            img = self.convert(
                img,
                alpha=alpha)
        return img

    def saturation(self, img, alpha, do):
        """Saturation distortion."""
        if do:
            # alpha = random.uniform(self.saturation_lower,
            #                         self.saturation_upper)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
            img[:, :, 1] = self.convert(
                img[:, :, 1],
                alpha=alpha)
            img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)        
        return img

    def hue(self, img, rand_hue, do):
        """Hue distortion."""
        if do:
            # rand_hue = random.randint(-self.hue_delta, self.hue_delta)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
            img[:, :, 0] = (img[:, :, 0].astype(int) + rand_hue) % 180
            img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
        return img
    
    def rgb2gray(self, img):
        img = self.gray_aug(image=img)
        return img

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        """Call function to perform photometric distortion on images.
        Args:
            results (dict): Result dict from loading pipeline.
        Returns:
            dict: Result dict with images distorted.
        """
        brightness_beta = random.uniform(-self.brightness_delta, self.brightness_delta)
        brightness_do = random.random() < self.distortion_prob

        contrast_alpha = random.uniform(self.contrast_lower, self.contrast_upper)
        contrast_do = random.random() < self.distortion_prob

        saturate_alpha = random.uniform(self.saturation_lower, self.saturation_upper)
        saturate_do = random.random() < self.distortion_prob

        rand_hue = random.randint(-self.hue_delta, self.hue_delta)
        rand_hue_do = random.random() < self.distortion_prob

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        mode = 1 if random.random() > 0.5 else 2
        for i, img in enumerate(images):
            if random.random() < self.to_gray_prob:
                img = self.rgb2gray(img)
            else:
                # random brightness
                img = self.brightness(img, brightness_beta, brightness_do)

                if mode == 1:
                    img = self.contrast(img, contrast_alpha, contrast_do)

                # random saturation
                img = self.saturation(img, saturate_alpha, saturate_do)

                # random hue
                img = self.hue(img, rand_hue, rand_hue_do)

                # random contrast
                if mode == 0:
                    img = self.contrast(img, contrast_alpha, contrast_do)
            images[i] = img
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras

class Weather(object):
    """Apply the following weather augmentations to data.
    Args:
        prob (float): probability to enforce the weather augmentation.
    """

    def __init__(self,
                 prob=0.3,
                 **kwargs):
        snow = iaa.FastSnowyLandscape(
            lightness_threshold=[50, 100],
            lightness_multiplier=(1.2, 2)
            )
        cloud = iaa.Clouds()
        fog = iaa.Fog()
        snow_flakes = iaa.Snowflakes(flake_size=(0.2, 0.4), speed=(0.001, 0.03)) #iaa.imgcorruptlike.Snow(severity=2)# 
        rain = iaa.Rain(speed=(0.1, 0.3), drop_size=(0.1, 0.3))
        # rain_drops = RainDrop_Augmentor()
        self.aug_list = [
            snow, cloud, fog, snow_flakes, rain, 
            #wa.add_sun_flare, wa.darken, wa.random_brightness,
        ]
        self.prob = prob
    
    def aug_with_weather(self, imgs, id):
        weather = self.aug_list[id]
        if id <5:
            return weather(images=imgs)
        else:
            return weather(imgs)

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        """Call function to perform photometric distortion on images.
        Args:
            results (dict): Result dict from loading pipeline.
        Returns:
            dict: Result dict with images distorted.
        """
        if random.random() < self.prob:
            select_id = np.random.randint(0, high=len(self.aug_list))  
            images = self.aug_with_weather(images, select_id)        
        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras
        
    
def resize_depth_preserve(depth, shape):
    """
    Resizes depth map preserving all valid depth pixels
    Multiple downsampled points can be assigned to the same pixel.

    Parameters
    ----------
    depth : np.array [h,w]
        Depth map
    shape : tuple (H,W)
        Output shape

    Returns
    -------
    depth : np.array [H,W,1]
        Resized depth map
    """
    # Store dimensions and reshapes to single column
    depth = np.squeeze(depth)
    h, w = depth.shape
    x = depth.reshape(-1)
    # Create coordinate grid
    uv = np.mgrid[:h, :w].transpose(1, 2, 0).reshape(-1, 2)
    # Filters valid points
    idx = x > 0
    crd, val = uv[idx], x[idx]
    # Downsamples coordinates
    crd[:, 0] = (crd[:, 0] * (shape[0] / h) + 0.5).astype(np.int32)
    crd[:, 1] = (crd[:, 1] * (shape[1] / w) + 0.5).astype(np.int32)
    # Filters points inside image
    idx = (crd[:, 0] < shape[0]) & (crd[:, 1] < shape[1])
    crd, val = crd[idx], val[idx]
    # Creates downsampled depth image and assigns points
    depth = np.zeros(shape)
    depth[crd[:, 0], crd[:, 1]] = val
    # Return resized depth map
    return depth


def gray_to_colormap(img, cmap='rainbow', max_value=None):
    """
    Transfer gray map to matplotlib colormap
    """
    assert img.ndim == 2

    img[img<0] = 0
    mask_invalid = img < 1e-10
    if max_value == None:
        img = img / (img.max() + 1e-8)
    else:
        img = img / (max_value + 1e-8)
    norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1)
    cmap_m = matplotlib.cm.get_cmap(cmap)
    map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m)
    colormap = (map.to_rgba(img)[:, :, :3] * 255).astype(np.uint8)
    colormap[mask_invalid] = 0
    return colormap


class LiDarResizeCanonical(object):
    """
    Resize the input to the canonical space first, then resize the input with random sampled size.
    In the first stage, we assume the distance holds while the camera model varies. 
    In the second stage, we aim to simulate the observation in different distance. The camera will move along the optical axis.
    """
    def __init__(self, **kwargs):
        self.ratio_range = kwargs['ratio_range']
        self.canonical_focal = kwargs['focal_length']
        self.crop_size = kwargs['crop_size']
    
    def random_on_canonical_transform(self, image, label, intrinsic, cam_model, to_random_ratio):
        ori_h, ori_w, _ = image.shape
        ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0

        to_canonical_ratio = self.canonical_focal / ori_focal
        to_scale_ratio = to_random_ratio
        resize_ratio = to_canonical_ratio * to_random_ratio
        reshape_h = int(ori_h * resize_ratio + 0.5)
        reshape_w = int(ori_w * resize_ratio + 0.5)

        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        if intrinsic is not None:
            intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio]
        if label is not None:
            # number of other labels may be less than that of image
            #label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            label = resize_depth_preserve(label, (reshape_h, reshape_w))
            # scale the label and camera intrinsics
            label = label / to_scale_ratio
        
        if cam_model is not None:
            # Should not directly resize the cam_model.
            # Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. 
            # cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
        return image, label, intrinsic, cam_model, to_scale_ratio    
    
    def random_on_crop_transform(self, image, label, intrinsic, cam_model, to_random_ratio):
        ori_h, ori_w, _ = image.shape
        crop_h, crop_w = self.crop_size
        ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0

        to_canonical_ratio = self.canonical_focal / ori_focal
        
        # random resize based on the last crop size
        proposal_reshape_h = int(crop_h * to_random_ratio + 0.5) 
        proposal_reshape_w = int(crop_w * to_random_ratio + 0.5)
        resize_ratio_h = proposal_reshape_h / ori_h
        resize_ratio_w = proposal_reshape_w / ori_w
        resize_ratio = min(resize_ratio_h, resize_ratio_w) # resize based on the long edge
        reshape_h = int(ori_h * resize_ratio + 0.5)
        reshape_w = int(ori_w * resize_ratio + 0.5)
        
        to_scale_ratio = resize_ratio / to_canonical_ratio        

        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        if intrinsic is not None:
            intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio]
        if label is not None:
            # number of other labels may be less than that of image
            # label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            label = resize_depth_preserve(label, (reshape_h, reshape_w))
            # scale the label and camera intrinsics
            label = label / to_scale_ratio
        
        if cam_model is not None:
            # Should not directly resize the cam_model.
            # Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. 
            # cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
        return image, label, intrinsic, cam_model, to_scale_ratio          

    def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None):
        assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
        assert labels[0].dtype == np.float
        target_focal = (intrinsics[0][0] + intrinsics[0][1]) / 2.0
        target_to_canonical_ratio = self.canonical_focal / target_focal
        target_img_shape = images[0].shape
        to_random_ratio = random.uniform(self.ratio_range[0], self.ratio_range[1])
        to_scale_ratio = 0
        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i] if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model, to_scale_ratio = self.random_on_canonical_transform(
                img, label, intrinsic, cam_model, to_random_ratio)
                
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model 
        if normals != None: 
            reshape_h, reshape_w, _ = images[0].shape
            for i, normal in enumerate(normals):
                normals[i] = cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
                
        if other_labels != None: 
            # other labels are like semantic segmentations, instance segmentations, instance planes segmentations...           
            # resize_ratio = target_to_canonical_ratio * to_random_ratio
            # reshape_h = int(target_img_shape[0] * resize_ratio + 0.5)
            # reshape_w = int(target_img_shape[1] * resize_ratio + 0.5)
            reshape_h, reshape_w, _ = images[0].shape
            for i, other_label_i in enumerate(other_labels):
                other_labels[i] = cv2.resize(other_label_i, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
              
        if transform_paras is not None:
            transform_paras.update(label_scale_factor = 1.0/to_scale_ratio)

        return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras



def build_camera_model(H : int, W : int, intrinsics : list) -> np.array:
    """
    Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map. 
    """
    fx, fy, u0, v0 = intrinsics
    f = (fx + fy) / 2.0
    # principle point location
    x_row = np.arange(0, W).astype(np.float32)
    x_row_center_norm = (x_row - u0) / W
    x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W]

    y_col = np.arange(0, H).astype(np.float32) 
    y_col_center_norm = (y_col - v0) / H
    y_center = np.tile(y_col_center_norm, (W, 1)).T

    # FoV
    fov_x = np.arctan(x_center / (f / W))
    fov_y =  np.arctan(y_center/ (f / H))

    cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2)
    return cam_model


if __name__ == '__main__':
    img = cv2.imread('/mnt/mldb/raw/62b3ed3455e805efcb28c74b/NuScenes/data_test/samples/CAM_FRONT/n008-2018-08-01-15-34-25-0400__CAM_FRONT__1533152214512404.jpg', -1)
    H, W, _ = img.shape
    label = img[:, :, 0]
    intrinsic = [1000, 1000, W//2, H//2]
    for i in range(20):
        weather_aug = Weather(prob=1.0)
        img_aug,  label, intrinsic, cam_model, ref_images, transform_paras = weather_aug([img, ], [label,], [intrinsic,])
        cv2.imwrite(f'test_aug_{i}.jpg', img_aug[0])
    
    print('Done')