File size: 6,873 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# change rainy drop func from
# https://github.com/EvoCargo/RaindropsOnWindshield/blob/main/raindrops_generator/raindrop/raindrop.py

import math
import random
from random import randint

import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFilter
from raindropper.config import cfg


def make_bezier(xys):
    # xys should be a sequence of 2-tuples (Bezier control points)
    n = len(xys)
    combinations = pascal_row(n - 1)

    def bezier(ts):
        # This uses the generalized formula for bezier curves
        # http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Generalization
        result = []
        for t in ts:
            tpowers = (t**i for i in range(n))
            upowers = reversed([(1 - t)**i for i in range(n)])
            coefs = [c * a * b for c, a, b in zip(combinations, tpowers, upowers)]
            result.append(tuple(sum([coef * p for coef, p in zip(coefs, ps)]) for ps in zip(*xys)))
        return result

    return bezier


def pascal_row(n, memo={}):
    # This returns the nth row of Pascal Triangle
    if n in memo:
        return memo[n]
    result = [1]
    x, numerator = 1, n
    for denominator in range(1, n // 2 + 1):
        x *= numerator
        x /= denominator
        result.append(x)
        numerator -= 1
        if n & 1 == 0:
            result.extend(reversed(result[:-1]))
        else:
            result.extend(reversed(result))
        memo[n] = result
    return result


class Raindrop():

    def __init__(self, key, centerxy=None, radius=None, shape=None):
        # param key: a unique key identifying a drop
        # param centerxy: tuple defining coordinates of raindrop center in the image
        # param radius: radius of a drop
        # param shape: int from 0 to 2 defining raindrop shape type
        self.key = key
        self.ifcol = False
        self.col_with = []
        self.center = centerxy
        self.radius = radius
        # self.blur_coeff = max(int(self.radius/3), 1)
        # self.blur_coeff = max(int(cfg["maxR"] / self.radius), 1)
        self.blur_coeff = 3
        self.shape = shape
        self.type = 'default'
        # label map's WxH = 4*R , 5*R
        self.labelmap = np.zeros((self.radius * 5, self.radius * 4))
        self.alphamap = np.zeros((self.radius * 5, self.radius * 4))
        self.background = None
        self.texture = None
        self.control_point = {}
        self._create_label()
        self.use_label = False

    def setCollision(self, col, col_with):
        self.ifcol = col
        self.col_with = col_with

    def updateTexture(self, bg):
        # gaussian blur radius may be 1, 3, 5
        radius_array = [1, 3]
        blur_radius_idx = randint(0, 1)
        blur_radius = radius_array[blur_radius_idx]
        fg = (Image.fromarray(np.uint8(bg))).filter(ImageFilter.GaussianBlur(radius=blur_radius))
        fg = np.asarray(fg)

        # add fish eye effect to simulate the background
        K = np.array([[30 * self.radius, 0, 2 * self.radius], [0., 20 * self.radius, 3 * self.radius], [0., 0., 1]])
        D = np.array([0.0, 0.0, 0.0, 0.0])
        Knew = K.copy()

        Knew[(0, 1), (0, 1)] = math.pow(self.radius, 1 / 500) * 2 * Knew[(0, 1), (0, 1)]
        fisheye = cv2.fisheye.undistortImage(fg, K, D=D, Knew=Knew)

        tmp = np.expand_dims(self.alphamap, axis=-1)
        tmp = np.concatenate((fisheye, tmp), axis=2)

        self.texture = Image.fromarray(tmp.astype('uint8'), 'RGBA')

    def _create_label(self):
        self._createDefaultDrop()

    def _createDefaultDrop(self):
        """create the raindrop Alpha Map according to its shape type update
        raindrop label."""
        if (self.shape == 0):
            cv2.circle(self.labelmap, (self.radius * 2, self.radius * 3), int(self.radius), 128, -1)
            self.alphamap = (Image.fromarray(np.uint8(self.labelmap))).filter(
                ImageFilter.GaussianBlur(radius=self.blur_coeff))
            self.alphamap = np.asarray(self.alphamap).astype(np.float)
            self.alphamap = self.alphamap / np.max(self.alphamap) * 255.0
            # set label map
            self.labelmap[self.labelmap > 0] = 1

        if (self.shape == 1):
            cv2.circle(self.labelmap, (self.radius * 2, self.radius * 3), int(self.radius), 128, -1)
            cv2.ellipse(self.labelmap, (self.radius * 2, self.radius * 3),
                        (self.radius, int(1.3 * math.sqrt(3) * self.radius)), 0, 180, 360, 128, -1)

            self.alphamap = (Image.fromarray(np.uint8(self.labelmap))).filter(
                ImageFilter.GaussianBlur(radius=self.blur_coeff))
            self.alphamap = np.asarray(self.alphamap).astype(np.float)
            self.alphamap = self.alphamap / np.max(self.alphamap) * 255.0
            # set label map
            self.labelmap[self.labelmap > 0] = 1

        if (self.shape == 2):
            C0 = random.uniform(0, 1)
            C1 = random.uniform(0, 1)
            A0 = random.uniform(0, 1)
            A1 = random.uniform(2, 3)
            D0 = random.uniform(2, 3)
            D1 = random.uniform(2, 3)
            B0 = random.uniform(2, 3)
            B1 = random.uniform(0, 1)

            self.control_point['A'] = (A0, A1)
            self.control_point['B'] = (B0, B1)
            self.control_point['C'] = (C0, C1)
            self.control_point['D'] = (D0, D1)

            img = Image.fromarray(np.uint8(self.labelmap), 'L')
            draw = ImageDraw.Draw(img)
            ts = [t / 100.0 for t in range(101)]
            xys = [(self.radius * C0, self.radius * C1), (self.radius * B0, self.radius * B1),
                   (self.radius * D0, self.radius * D1)]
            bezier = make_bezier(xys)
            points = bezier(ts)

            xys = [(self.radius * C0, self.radius * C1), (self.radius * A0, self.radius * A1),
                   (self.radius * D0, self.radius * D1)]
            bezier = make_bezier(xys)
            points.extend(bezier(ts))
            draw.polygon(points, fill='gray')

            self.alphamap = img.filter(ImageFilter.GaussianBlur(radius=self.blur_coeff))
            self.alphamap = np.asarray(self.alphamap).astype(np.float)
            self.alphamap = self.alphamap / np.max(self.alphamap) * 255.0

            # set label map
            self.labelmap[self.labelmap > 0] = 1

    def setKey(self, key):
        self.key = key

    def getLabelMap(self):
        return self.labelmap

    def getAlphaMap(self):
        return self.alphamap

    def getTexture(self):
        return self.texture

    def getCenters(self):
        return self.center

    def getRadius(self):
        return self.radius

    def getKey(self):
        return self.key

    def getIfColli(self):
        return self.ifcol

    def getCollisionList(self):
        return self.col_with

    def getUseLabel(self):
        return self.use_label