File size: 11,890 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import torch
import torch.nn.functional as F

pixel_coords = None

def set_id_grid(depth):
    global pixel_coords
    b, h, w = depth.size()
    i_range = torch.arange(0, h).view(1, h, 1).expand(
        1, h, w).type_as(depth)  # [1, H, W]
    j_range = torch.arange(0, w).view(1, 1, w).expand(
        1, h, w).type_as(depth)  # [1, H, W]
    ones = torch.ones(1, h, w).type_as(depth)

    pixel_coords = torch.stack((j_range, i_range, ones), dim=1)  # [1, 3, H, W]


def check_sizes(input, input_name, expected):
    condition = [input.ndimension() == len(expected)]
    for i, size in enumerate(expected):
        if size.isdigit():
            condition.append(input.size(i) == int(size))
    assert(all(condition)), "wrong size for {}, expected {}, got  {}".format(
        input_name, 'x'.join(expected), list(input.size()))


def pixel2cam(depth, intrinsics_inv):
    global pixel_coords
    """Transform coordinates in the pixel frame to the camera frame.
    Args:
        depth: depth maps -- [B, H, W]
        intrinsics_inv: intrinsics_inv matrix for each element of batch -- [B, 3, 3]
    Returns:
        array of (u,v,1) cam coordinates -- [B, 3, H, W]
    """
    b, h, w = depth.size()
    if (pixel_coords is None) or pixel_coords.size(2) < h:
        set_id_grid(depth)
    current_pixel_coords = pixel_coords[:, :, :h, :w].expand(
        b, 3, h, w).reshape(b, 3, -1)  # [B, 3, H*W]
    cam_coords = (intrinsics_inv @ current_pixel_coords).reshape(b, 3, h, w)
    out = depth.unsqueeze(1) * cam_coords
    return  out


def cam2pixel(cam_coords, proj_c2p_rot, proj_c2p_tr, padding_mode):
    """Transform coordinates in the camera frame to the pixel frame.
    Args:
        cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 4, H, W]
        proj_c2p_rot: rotation matrix of cameras -- [B, 3, 4]
        proj_c2p_tr: translation vectors of cameras -- [B, 3, 1]
    Returns:
        array of [-1,1] coordinates -- [B, 2, H, W]
    """
    b, _, h, w = cam_coords.size()
    cam_coords_flat = cam_coords.reshape(b, 3, -1)  # [B, 3, H*W]
    if proj_c2p_rot is not None:
        pcoords = proj_c2p_rot @ cam_coords_flat
    else:
        pcoords = cam_coords_flat

    if proj_c2p_tr is not None:
        pcoords = pcoords + proj_c2p_tr  # [B, 3, H*W]
    X = pcoords[:, 0]
    Y = pcoords[:, 1]
    Z = pcoords[:, 2].clamp(min=1e-3)

    # Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1) [B, H*W]
    X_norm = 2*(X / Z)/(w-1) - 1
    Y_norm = 2*(Y / Z)/(h-1) - 1  # Idem [B, H*W]

    pixel_coords = torch.stack([X_norm, Y_norm], dim=2)  # [B, H*W, 2]
    return pixel_coords.reshape(b, h, w, 2)


def euler2mat(angle):
    """Convert euler angles to rotation matrix.
     Reference: https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174
    Args:
        angle: rotation angle along 3 axis (in radians) -- size = [B, 3]
    Returns:
        Rotation matrix corresponding to the euler angles -- size = [B, 3, 3]
    """
    B = angle.size(0)
    x, y, z = angle[:, 0], angle[:, 1], angle[:, 2]

    cosz = torch.cos(z)
    sinz = torch.sin(z)

    zeros = z.detach()*0
    ones = zeros.detach()+1
    zmat = torch.stack([cosz, -sinz, zeros,
                        sinz,  cosz, zeros,
                        zeros, zeros,  ones], dim=1).reshape(B, 3, 3)

    cosy = torch.cos(y)
    siny = torch.sin(y)

    ymat = torch.stack([cosy, zeros,  siny,
                        zeros,  ones, zeros,
                        -siny, zeros,  cosy], dim=1).reshape(B, 3, 3)

    cosx = torch.cos(x)
    sinx = torch.sin(x)

    xmat = torch.stack([ones, zeros, zeros,
                        zeros,  cosx, -sinx,
                        zeros,  sinx,  cosx], dim=1).reshape(B, 3, 3)

    rotMat = xmat @ ymat @ zmat
    return rotMat


def quat2mat(quat):
    """Convert quaternion coefficients to rotation matrix.
    Args:
        quat: first three coeff of quaternion of rotation. fourht is then computed to have a norm of 1 -- size = [B, 3]
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """
    norm_quat = torch.cat([quat[:, :1].detach()*0 + 1, quat], dim=1)
    norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
    w, x, y, z = norm_quat[:, 0], norm_quat[:,
                                            1], norm_quat[:, 2], norm_quat[:, 3]

    B = quat.size(0)

    w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    wx, wy, wz = w*x, w*y, w*z
    xy, xz, yz = x*y, x*z, y*z

    rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
                          2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
                          2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).reshape(B, 3, 3)
    return rotMat


def pose_vec2mat(vec, rotation_mode='euler'):
    """
    Convert 6DoF parameters to transformation matrix.
    Args:s
        vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6]
    Returns:
        A transformation matrix -- [B, 3, 4]
    """
    translation = vec[:, :3].unsqueeze(-1)  # [B, 3, 1]
    rot = vec[:, 3:]
    if rotation_mode == 'euler':
        rot_mat = euler2mat(rot)  # [B, 3, 3]
    elif rotation_mode == 'quat':
        rot_mat = quat2mat(rot)  # [B, 3, 3]
    transform_mat = torch.cat([rot_mat, translation], dim=2)  # [B, 3, 4]
    return transform_mat


def inverse_warp(img, depth, pose, intrinsics, rotation_mode='euler', padding_mode='zeros'):
    """
    Inverse warp a source image to the target image plane.
    Args:
        img: the source image (where to sample pixels) -- [B, 3, H, W]
        depth: depth map of the target image -- [B, H, W]
        pose: 6DoF pose parameters from target to source -- [B, 6]
        intrinsics: camera intrinsic matrix -- [B, 3, 3]
    Returns:
        projected_img: Source image warped to the target image plane
        valid_points: Boolean array indicating point validity
    """
    check_sizes(img, 'img', 'B3HW')
    check_sizes(depth, 'depth', 'BHW')
    check_sizes(pose, 'pose', 'B6')
    check_sizes(intrinsics, 'intrinsics', 'B33')

    batch_size, _, img_height, img_width = img.size()

    cam_coords = pixel2cam(depth, intrinsics.inverse())  # [B,3,H,W]

    pose_mat = pose_vec2mat(pose, rotation_mode)  # [B,3,4]

    # Get projection matrix for tgt camera frame to source pixel frame
    proj_cam_to_src_pixel = intrinsics @ pose_mat  # [B, 3, 4]

    rot, tr = proj_cam_to_src_pixel[:, :, :3], proj_cam_to_src_pixel[:, :, -1:]
    src_pixel_coords = cam2pixel(
        cam_coords, rot, tr, padding_mode)  # [B,H,W,2]
    projected_img = F.grid_sample(
        img, src_pixel_coords, padding_mode=padding_mode)

    valid_points = src_pixel_coords.abs().max(dim=-1)[0] <= 1

    return projected_img, valid_points


def cam2pixel2(cam_coords, proj_c2p_rot, proj_c2p_tr, padding_mode):
    """Transform coordinates in the camera frame to the pixel frame.
    Args:
        cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 4, H, W]
        proj_c2p_rot: rotation matrix of cameras -- [B, 3, 4]
        proj_c2p_tr: translation vectors of cameras -- [B, 3, 1]
    Returns:
        array of [-1,1] coordinates -- [B, 2, H, W]
    """
    b, _, h, w = cam_coords.size()
    cam_coords_flat = cam_coords.reshape(b, 3, -1)  # [B, 3, H*W]
    if proj_c2p_rot is not None:
        pcoords = proj_c2p_rot @ cam_coords_flat
    else:
        pcoords = cam_coords_flat

    if proj_c2p_tr is not None:
        pcoords = pcoords + proj_c2p_tr  # [B, 3, H*W]
    X = pcoords[:, 0]
    Y = pcoords[:, 1]
    Z = pcoords[:, 2].clamp(min=1e-3)

    # Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1) [B, H*W]
    X_norm = 2*(X / Z)/(w-1) - 1
    Y_norm = 2*(Y / Z)/(h-1) - 1  # Idem [B, H*W]
    if padding_mode == 'zeros':
        X_mask = ((X_norm > 1)+(X_norm < -1)).detach()
        # make sure that no point in warped image is a combinaison of im and gray
        X_norm[X_mask] = 2
        Y_mask = ((Y_norm > 1)+(Y_norm < -1)).detach()
        Y_norm[Y_mask] = 2

    pixel_coords = torch.stack([X_norm, Y_norm], dim=2)  # [B, H*W, 2]
    return pixel_coords.reshape(b, h, w, 2), Z.reshape(b, 1, h, w)


def inverse_warp2(img, depth, ref_depth, pose, intrinsics, padding_mode='zeros'):
    """
    Inverse warp a source image to the target image plane.
    Args:
        img: the source image (where to sample pixels) -- [B, 3, H, W]
        depth: depth map of the target image -- [B, 1, H, W]
        ref_depth: the source depth map (where to sample depth) -- [B, 1, H, W] 
        pose: 6DoF pose parameters from target to source -- [B, 6]
        intrinsics: camera intrinsic matrix -- [B, 3, 3]
    Returns:
        projected_img: Source image warped to the target image plane
        valid_mask: Float array indicating point validity
        projected_depth: sampled depth from source image  
        computed_depth: computed depth of source image using the target depth
    """
    check_sizes(img, 'img', 'B3HW')
    check_sizes(depth, 'depth', 'B1HW')
    check_sizes(ref_depth, 'ref_depth', 'B1HW')
    check_sizes(pose, 'pose', 'B6')
    check_sizes(intrinsics, 'intrinsics', 'B33')

    batch_size, _, img_height, img_width = img.size()

    cam_coords = pixel2cam(depth.squeeze(1), intrinsics.inverse())  # [B,3,H,W]

    pose_mat = pose_vec2mat(pose)  # [B,3,4]

    # Get projection matrix for tgt camera frame to source pixel frame
    proj_cam_to_src_pixel = intrinsics @ pose_mat  # [B, 3, 4]

    rot, tr = proj_cam_to_src_pixel[:, :, :3], proj_cam_to_src_pixel[:, :, -1:]
    src_pixel_coords, computed_depth = cam2pixel2(cam_coords, rot, tr, padding_mode)  # [B,H,W,2]
    projected_img = F.grid_sample(img, src_pixel_coords, padding_mode=padding_mode, align_corners=False)

    projected_depth = F.grid_sample(ref_depth, src_pixel_coords, padding_mode=padding_mode, align_corners=False)

    return projected_img, projected_depth, computed_depth


def inverse_rotation_warp(img, rot, intrinsics, padding_mode='zeros'):

    b, _, h, w = img.size()
    cam_coords = pixel2cam(torch.ones(b, h, w).type_as(img), intrinsics.inverse())  # [B,3,H,W]

    rot_mat = euler2mat(rot)  # [B, 3, 3]

    # Get projection matrix for tgt camera frame to source pixel frame
    proj_cam_to_src_pixel = intrinsics @ rot_mat  # [B, 3, 3]

    src_pixel_coords, computed_depth = cam2pixel2(cam_coords, proj_cam_to_src_pixel, None, padding_mode)  # [B,H,W,2]
    projected_img = F.grid_sample(img, src_pixel_coords, padding_mode=padding_mode, align_corners=True)

    return projected_img

def grid_to_flow(grid):
    b, h, w, _ = grid.size()
    i_range = torch.arange(0, h).view(1, h, 1).expand(1, h, w).type_as(grid)  # [1, H, W]
    j_range = torch.arange(0, w).view(1, 1, w).expand(1, h, w).type_as(grid)  # [1, H, W]
    image_coords = torch.stack((j_range, i_range), dim=1)  # [1, 2, H, W]

    flow = torch.zeros_like(grid).type_as(grid)
    flow[:, :, :, 0] = (grid[:, :, :, 0]+1) / 2 * (w-1)
    flow[:, :, :, 1] = (grid[:, :, :, 1]+1) / 2 * (h-1)
    flow = flow.permute([0, 3, 1, 2])

    flow -= image_coords

    return flow

def compute_translation_flow(depth, pose, intrinsics):
    cam_coords = pixel2cam(depth.squeeze(1), intrinsics.inverse())  # [B,3,H,W]

    pose_mat = pose_vec2mat(pose)  # [B,3,4]

    # Get projection matrix for tgt camera frame to source pixel frame
    proj_cam_to_src_pixel = intrinsics @ pose_mat  # [B, 3, 4]

    rot, tr = proj_cam_to_src_pixel[:, :, :3], proj_cam_to_src_pixel[:, :, -1:]

    grid_all, _ = cam2pixel2(cam_coords, rot, tr, padding_mode='zeros')  # [B,H,W,2]
    grid_rot, _ = cam2pixel2(cam_coords, rot, None, padding_mode='zeros')  # [B,H,W,2]

    flow_all = grid_to_flow(grid_all)
    flow_rot = grid_to_flow(grid_rot)
    flow_tr = (flow_all - flow_rot)

    return flow_tr