File size: 9,126 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import logging
import os
from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, visual_train_data, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from mono.utils.logger import setup_logger
from mono.utils.comm import main_process
#from scipy.optimize import minimize
#from torchmin import minimize
import torch.optim as optim
from torch.autograd import Variable


def to_cuda(data: dict):
    for k, v in data.items():
        if isinstance(v, torch.Tensor):
            data[k] = v.cuda(non_blocking=True)
        if isinstance(v, list) and len(v)>=1 and isinstance(v[0], torch.Tensor):
            for i, l_i in enumerate(v):
                data[k][i] = l_i.cuda(non_blocking=True)
    return data

def align_scale(pred: torch.tensor, target: torch.tensor):
    mask = target > 0
    if torch.sum(mask) > 10:
        scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
    else:
        scale = 1
    pred_scale = pred * scale
    return pred_scale, scale

def align_shift(pred: torch.tensor, target: torch.tensor):
    mask = target > 0
    if torch.sum(mask) > 10:
        shift = torch.median(target[mask]) - (torch.median(pred[mask]) + 1e-8)
    else:
        shift = 0
    pred_shift = pred + shift
    return pred_shift, shift

def align_scale_shift(pred: torch.tensor, target: torch.tensor):
    mask = target > 0
    target_mask = target[mask].cpu().numpy()
    pred_mask = pred[mask].cpu().numpy()
    if torch.sum(mask) > 10:
        scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
        if scale < 0:
            scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
            shift = 0
    else:
        scale = 1
        shift = 0
    pred = pred * scale + shift
    return pred, scale

def get_prediction(
    model: torch.nn.Module,
    input: torch.tensor, 
    cam_model: torch.tensor,
    pad_info: torch.tensor,
    scale_info: torch.tensor,
    gt_depth: torch.tensor,
    normalize_scale: float,
    intrinsic = None,
    clip_range = None,
    flip_aug = False):    
    #clip_range = [0, 10],
    #flip_aug = True):

    data = dict(
        input=input,
        #ref_input=ref_input,
        cam_model=cam_model
    )
    #output = model.module.inference(data)
    output = model.module.inference(data)
    pred_depth, confidence = output['prediction'], output['confidence']
    pred_depth = torch.abs(pred_depth)
    pred_depth = pred_depth.squeeze()

    if flip_aug == True:
        output_flip = model.module.inference(dict(
        input=torch.flip(input, [3]),
        #ref_input=ref_input,
        cam_model=cam_model
    ))

        if clip_range != None:
            output['prediction'] = torch.clamp(output['prediction'], clip_range[0], clip_range[1])
            output_flip['prediction'] = torch.clamp(output_flip['prediction'], clip_range[0] / normalize_scale * scale_info , clip_range[1] / normalize_scale * scale_info)

        output['prediction'] = 0.5 * (output['prediction'] + torch.flip(output_flip['prediction'], [3]))
        output['confidence'] = 0.5 * (output['confidence'] + torch.flip(output_flip['confidence'], [3]))

    output['pad'] = torch.Tensor(pad_info).cuda().unsqueeze(0).int()
    output['mask'] = torch.ones_like(pred_depth).bool().unsqueeze(0).unsqueeze(1)
    output['scale_info'] = scale_info 
    if intrinsic is not None:
        output['intrinsic'] = intrinsic

    pred_depth = pred_depth[pad_info[0]: pred_depth.shape[0]-pad_info[1], pad_info[2]: pred_depth.shape[1]-pad_info[3]]
    pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], gt_depth.shape, mode='bilinear').squeeze() # to orginal size
    pred_depth = pred_depth * normalize_scale / scale_info 

    if clip_range != None:
        pred_depth = torch.clamp(pred_depth, clip_range[0], clip_range[1])

    pred_depth_scale, scale = align_scale(pred_depth, gt_depth) #align_scale_shift(pred_depth, gt_depth) 

    if clip_range != None:
        pred_depth_scale = torch.clamp(pred_depth_scale, clip_range[0], clip_range[1])

    return pred_depth, pred_depth_scale, scale, output


# def depth_normal_consistency_optimization(output_dict, consistency_fn): 
#     s = torch.zeros_like(output_dict['scale_info'])
#     def closure(x):
#         output_dict['scale'] = torch.exp(x) * output_dict['scale_info']  
#         error = consistency_fn(**output_dict)
#         return error + x * x

#     result = minimize(closure, s, method='newton-exact', disp=1, options={'max_iter':10, 'lr':0.1})
#     return float(torch.exp(-result.x))


def do_test_with_dataloader(
    model: torch.nn.Module, 
    cfg: dict, 
    dataloader: torch.utils.data,
    logger: logging.RootLogger,
    is_distributed: bool = True,
    local_rank: int = 0):
    
    show_dir = cfg.show_dir
    save_interval = 100
    save_html_path = show_dir + '/index.html'
    save_imgs_dir = show_dir + '/vis'
    os.makedirs(save_imgs_dir, exist_ok=True)
    save_raw_dir = show_dir + '/raw'
    os.makedirs(save_raw_dir, exist_ok=True)

    normalize_scale = cfg.data_basic.depth_range[1]

    dam = MetricAverageMeter(cfg.test_metrics)
    dam_scale = MetricAverageMeter(cfg.test_metrics)

    try:
        depth_range = cfg.data_basic.clip_depth_range if cfg.clip_depth else None
    except:
        depth_range = None

    for i, data in enumerate(tqdm(dataloader)):

        # logger.info(f'{local_rank}: {i}/{len(dataloader)}')
        data = to_cuda(data)
        gt_depth = data['target'].squeeze()
        mask = gt_depth > 1e-6
        pad_info = data['pad']
        pred_depth, pred_depth_scale, scale, output = get_prediction(
            model,
            data['input'],
            data['cam_model'],
            pad_info,
            data['scale'],
            gt_depth,
            normalize_scale,
            data['intrinsic'],
        )
        
        logger.info(f'{data["filename"]}: {scale}')

        # optimization
        #if "normal_out_list" in output.keys():
            #scale_opt = depth_normal_consistency_optimization(output, consistency_loss)
            #print('scale', scale_opt, float(scale)) 
        scale_opt = 1.0

        # update depth metrics
        dam_scale.update_metrics_gpu(pred_depth_scale, gt_depth, mask, is_distributed)
        dam.update_metrics_gpu(pred_depth, gt_depth, mask, is_distributed)

        # save evaluation results
        if i % save_interval == 0:
            # save 
            rgb = data['input'][:, :, pad_info[0]: data['input'].shape[2]-pad_info[1], pad_info[2]: data['input'].shape[3]-pad_info[3]]
            rgb = torch.nn.functional.interpolate(rgb, gt_depth.shape, mode='bilinear').squeeze()
            max_scale = save_val_imgs(i,
                          pred_depth, 
                          gt_depth, 
                          rgb, 
                          data['filename'][0], 
                          save_imgs_dir,
                          )
            logger.info(f'{data["filename"]}, {"max_scale"}: {max_scale}')

            # # save original depth/rgb
            # save_raw_imgs(
            #     pred_depth.cpu().squeeze().numpy(),
            #     data['raw_rgb'].cpu().squeeze().numpy(), 
            #     data['filename'][0], 
            #     save_raw_dir,
            # )

        
        # surface normal metrics
        if "normal_out_list" in output.keys():
            normal_out_list = output['normal_out_list']
            gt_normal = data['normal']

            pred_normal = normal_out_list[-1][:, :3, :, :] # (B, 3, H, W)
            H, W = pred_normal.shape[2:]
            pred_normal = pred_normal[:, :, pad_info[0]:H-pad_info[1], pad_info[2]:W-pad_info[3]]
            pred_normal = torch.nn.functional.interpolate(pred_normal, size=gt_normal.shape[2:], mode='bilinear', align_corners=True)

            gt_normal_mask = ~torch.all(gt_normal == 0, dim=1, keepdim=True)
            dam.update_normal_metrics_gpu(pred_normal, gt_normal, gt_normal_mask, cfg.distributed)# save valiad normal

            if i % save_interval == 0:
                save_normal_val_imgs(iter, 
                                    pred_normal, 
                                    gt_normal, 
                                    rgb, # data['input'], 
                                    'normal_' + data['filename'][0], 
                                    save_imgs_dir,
                                    )

    # get validation error
    if main_process():
        eval_error = dam.get_metrics()
        print('>>>>>W/o scale: ', eval_error)
        eval_error_scale = dam_scale.get_metrics()
        print('>>>>>W scale: ', eval_error_scale)
        # disp_eval_error = dam_disp.get_metrics()
        # print('>>>>>Disp to depth: ', disp_eval_error)
        # for i, dam in enumerate(dams):
        #     print(f'>>>>>W/o scale gru{i}: ', dam.get_metrics())

        logger.info(eval_error)
        logger.info(eval_error_scale)
        # logger.info(disp_eval_error)
        # [logger.info(dam.get_metrics()) for dam in dams]