z-dickson's picture
Update README.md
737099a
metadata
tags:
  - generated_from_keras_callback
model-index:
  - name: CAP_coded_UK_statutory_instruments
    results: []
widget:
  - text: >-
      The National Health Service (Charges for Drugs and Appliances) (Scotland)
      Regulations 2007
    example_title: example 1
  - text: The Inshore Fishing (Prohibited Methods of Fishing) (Luce Bay) Order 2015
    example_title: example 2

CAP_coded_UK_statutory_instruments

This model predicts the CAP code of parliamentary bills/instruments (https://www.comparativeagendas.net/pages/master-codebook)

The model is trained on ~40k UK Parliamentary Statutory Instruments from the UK House of Commons and the Scottish Parliament. The model is cased (case sensitive)

Any questions on the model and training data feel free to message me on twitter - @sachary_

  • Train Loss: 0.1188
  • Train Sparse Categorical Accuracy: 0.9688
  • Validation Loss: 0.2032
  • Validation Sparse Categorical Accuracy: 0.9556

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Sparse Categorical Accuracy Validation Loss Validation Sparse Categorical Accuracy Epoch
0.2167 0.9474 0.2351 0.9444 0
0.1539 0.9592 0.2076 0.9536 1
0.1188 0.9688 0.2032 0.9556 2

Framework versions

  • Transformers 4.19.2
  • TensorFlow 2.8.2
  • Datasets 2.2.2
  • Tokenizers 0.12.1