yzha commited on
Commit
06cd388
·
1 Parent(s): 305980e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md CHANGED
@@ -1,3 +1,142 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # AlignScore
5
+ This is the repository for AlignScore, a metric for automatic factual consistency evaluation of text pairs. The metric is introduced in
6
+
7
+ [AlignScore: Evaluating Factual Consistency with a Unified Alignment Function](https://arxiv.org/abs/2305.16739)
8
+
9
+ Yuheng Zha, Yichi Yang, Ruichen Li and Zhiting Hu
10
+
11
+ ACL 2023
12
+
13
+ What is factual consistency and its evaluation?
14
+ * **Facutual Consistency:** For a given text pair (**a**, **b**), they are considered factual consistent if 1) all the information in **b** is also present in **a**; 2) **b** does not contradict **a**.
15
+ * **Evaluation:** Show the degree of factual consistency between the context (text **a**) and the claim (text **b**).
16
+
17
+ Where is factual consistency evaluation applicable?
18
+ * **Summarization**: document and summary
19
+ * **Paraphrase**: sentence A and sentence B
20
+ * **Dialog**: context and response
21
+ * ...
22
+
23
+ # Leaderboard
24
+ We list the performance of AlignScore as well as other metrics here.
25
+
26
+ | Rank | Metrics | SummaC* | TRUE** | Other-Spearman | Average | Paper | Code |
27
+ | ---- | :--------------- | :-----: | :----: | :------------: | :-----: | :---: | :--: |
28
+ | 1 | AlignScore-large | 88.6 | 83.8 | 49.3 | 73.9 | - | - |
29
+ | 2 | AlignScore-base | 87.4 | 82.5 | 44.9 | 71.6 | - | - |
30
+ | 3 | QAFactEval | 83.8 | 79.4 | 42.4 | 68.5 | [:page\_facing\_up:(Fabbri et al. 2022)](https://arxiv.org/abs/2112.08542) | [:octocat:](https://github.com/salesforce/QAFactEval) |
31
+ | 4 | UniEval | 84.6 | 78.0 | 41.5 | 68.0 | [:page\_facing\_up:(Zhong et al. 2022)](https://arxiv.org/abs/2210.07197) | [:octocat:](https://github.com/maszhongming/UniEval) |
32
+ | 5 | SummaC-CONV | 81.0 | 78.7 | 34.2 | 64.6 | [:page\_facing\_up:(Laban et al. 2022)](https://arxiv.org/abs/2111.09525) | [:octocat:](https://github.com/tingofurro/summac) |
33
+ | 6 | BARTScore | 80.9 | 73.4 | 34.8 | 63.0 | [:page\_facing\_up:(Yuan et al. 2022)](https://arxiv.org/abs/2106.11520) | [:octocat:](https://github.com/neulab/BARTScore) |
34
+ | 7 | CTC | 81.2 | 72.4 | 35.3 | 63.0 | [:page\_facing\_up:(Deng et al. 2022)](https://arxiv.org/abs/2109.06379) | [:octocat:](https://github.com/tanyuqian/ctc-gen-eval) |
35
+ | 8 | SummaC-ZS | 79.0 | 78.2 | 30.4 | 62.5 | [:page\_facing\_up:(Laban et al. 2022)](https://arxiv.org/abs/2111.09525) | [:octocat:](https://github.com/tingofurro/summac) |
36
+ | 9 | ROUGE-2 | 78.1 | 72.4 | 27.9 | 59.5 | [:page\_facing\_up:(Lin 2004)](https://aclanthology.org/W04-1013/) | [:octocat:](https://github.com/pltrdy/rouge) |
37
+ | 10 | ROUGE-1 | 77.4 | 72.0 | 28.6 | 59.3 | [:page\_facing\_up:(Lin 2004)](https://aclanthology.org/W04-1013/) | [:octocat:](https://github.com/pltrdy/rouge) |
38
+ | 11 | ROUGE-L | 77.3 | 71.8 | 28.3 | 59.1 | [:page\_facing\_up:(Lin 2004)](https://aclanthology.org/W04-1013/) | [:octocat:](https://github.com/pltrdy/rouge) |
39
+ | 12 | QuestEval | 72.5 | 71.4 | 25.0 | 56.3 | [:page\_facing\_up:(Scialom et al. 2021)](https://arxiv.org/abs/2103.12693) | [:octocat:](https://github.com/ThomasScialom/QuestEval) |
40
+ | 13 | BLEU | 76.3 | 67.3 | 24.6 | 56.1 | [:page\_facing\_up:(Papineni et al. 2002)](https://aclanthology.org/P02-1040/) | [:octocat:](https://www.nltk.org/_modules/nltk/translate/bleu_score.html) |
41
+ | 14 | DAE | 66.8 | 65.7 | 35.1 | 55.8 | [:page\_facing\_up:(Goyal and Durrett 2020)](https://aclanthology.org/2020.findings-emnlp.322/) | [:octocat:](https://github.com/tagoyal/dae-factuality) |
42
+ | 15 | BLEURT | 69.2 | 71.9 | 24.9 | 55.4 | [:page\_facing\_up:(Sellam et al. 2020)](https://arxiv.org/abs/2004.04696) | [:octocat:](https://github.com/google-research/bleurt) |
43
+ | 16 | BERTScore | 72.1 | 68.6 | 21.9 | 54.2 | [:page\_facing\_up:(Zhang et al. 2020)](https://arxiv.org/abs/1904.09675) | [:octocat:](https://github.com/Tiiiger/bert_score) |
44
+ | 17 | SimCSE | 67.4 | 70.3 | 23.8 | 53.8 | [:page\_facing\_up:(Gao et al. 2021)](https://arxiv.org/abs/2104.08821) | [:octocat:](https://github.com/princeton-nlp/SimCSE) |
45
+ | 18 | FactCC | 68.8 | 62.7 | 21.2 | 50.9 | [:page\_facing\_up:(Kryscinski et al. 2020)](https://arxiv.org/abs/1910.12840) | [:octocat:](https://github.com/salesforce/factCC) |
46
+ | 19 | BLANC | 65.1 | 64.0 | 14.4 | 47.8 | [:page\_facing\_up:(Vasilyev et al. 2020)](https://arxiv.org/abs/2002.09836) | [:octocat:](https://github.com/PrimerAI/blanc) |
47
+ | 20 | NER-Overlap | 60.4 | 59.3 | 18.9 | 46.2 | [:page\_facing\_up:(Laban et al. 2022)](https://arxiv.org/abs/2111.09525) | [:octocat:](https://github.com/tingofurro/summac) |
48
+ | 21 | MNLI | 47.9 | 60.4 | 3.1 | 37.2 | [:page\_facing\_up:(Williams et al. 2018)](https://arxiv.org/abs/1704.05426) | [:octocat:](https://github.com/nyu-mll/multiNLI) |
49
+ | 22 | FEQA | 48.3 | 52.2 | -1.9 | 32.9 | [:page\_facing\_up:(Durmus et al. 2020)](https://arxiv.org/abs/2005.03754) | [:octocat:](https://github.com/esdurmus/feqa) |
50
+
51
+ \* SummaC: [\[Paper\]](https://arxiv.org/abs/2111.09525) \| [\[Github\]](https://github.com/tingofurro/summac)
52
+
53
+ ** TRUE: [\[Paper\]](https://arxiv.org/abs/2204.04991) \| [\[Github\]](https://github.com/google-research/true)
54
+
55
+
56
+ # Installation
57
+
58
+ Our models are trained and evaluated using PyTorch 1.12.1. We recommend using this version to reproduce the results.
59
+
60
+ 1. Please first install the right version of PyTorch before installing `alignscore`.
61
+ 2. You can install `alignscore` by cloning this repository and `pip install .`.
62
+ 3. After installing `alignscore`, please use `python -m spacy download en_core_web_sm` to install the required spaCy model (we use `spaCy` for sentenization).
63
+
64
+ # Evaluating Factual Consistency
65
+ To evaluate the factual consistency of the `claim` w.r.t. the `context`, simply use the score method of `AlignScore`.
66
+ ```python
67
+ from alignscore import AlignScore
68
+
69
+ scorer = AlignScore(model='roberta-base', batch_size=32, device='cuda:0', ckpt_path='/path/to/checkpoint', evaluation_mode='nli_sp')
70
+ score = scorer.score(contexts=['hello world'], claims=['hello world'])
71
+ ```
72
+ `model`: the backbone model of the metric. Now, we only provide the metric trained on RoBERTa
73
+
74
+ `batch_size`: the batch size of the inference
75
+
76
+ `device`: which device to run the metric
77
+
78
+ `ckpt_path`: the path to the checkpoint
79
+
80
+ `evaluation_mode`: choose from `'nli_sp', 'nli', 'bin_sp', 'bin'`. `nli` and `bin` refer to the 3-way and binary classficiation head, respectively. `sp` indicates if the chunk-sentence splitting method is used. `nli_sp` is the default setting of AlignScore
81
+
82
+
83
+ # Checkpoints
84
+ We provide two versions of the AlignScore checkpoints: `AlignScore-base` and `AlignScore-large`. The `-base` model is based on RoBERTa-base and has 125M parameters. The `-large` model is based on RoBERTa-large and has 355M parameters.
85
+
86
+ **AlignScore-base**:
87
+ https://huggingface.co/yzha/AlignScore/resolve/main/AlignScore-base.ckpt
88
+
89
+ **AlignScore-large**:
90
+ https://huggingface.co/yzha/AlignScore/resolve/main/AlignScore-large.ckpt
91
+
92
+ # Training
93
+ You can use the above checkpoints directly for factual consistency evaluation. However, if you wish to train an alignment model from scratch / on your own data, use `train.py`.
94
+ ```python
95
+ python train.py --seed 2022 --batch-size 32 \
96
+ --num-epoch 3 --devices 0 1 2 3 \
97
+ --model-name roberta-large -- ckpt-save-path ./ckpt/ \
98
+ --data-path ./data/training_sets/ \
99
+ --max-samples-per-dataset 500000
100
+ ```
101
+
102
+ `--seed`: the random seed for initialization
103
+
104
+ `--batch-size`: the batch size for training
105
+
106
+ `--num-epoch`: training epochs
107
+
108
+ `--devices`: which devices to train the metric, a list of GPU ids
109
+
110
+ `--model-name`: the backbone model name of the metric, default RoBERTa-large
111
+
112
+ `--ckpt-save-path`: the path to save the checkpoint
113
+
114
+ `--training-datasets`: the names of the training datasets
115
+
116
+ `--data-path`: the path to the training datasets
117
+
118
+ `--max-samples-per-dataset`: the maximum number of samples from a dataset
119
+
120
+ # Benchmarking
121
+ Our benchmark includes the TRUE and SummaC benchmark as well as several popular factual consistency evaluation datasets.
122
+
123
+ To run the benchmark, a few additional dependencies are required and can be installed with `pip install -r requirements.txt`.
124
+ Additionally, some depedencies are not available as packages and need to be downloaded manually (please see `python benchmark.py --help` for instructions).
125
+
126
+ Note installing `summac` may cause dependency conflicts with `alignscore`. Please reinstall `alignscore` to force the correct dependency versions.
127
+
128
+ The relevant arguments for evaluating AlignScore are:
129
+
130
+ `--alignscore`: evaluation the AlignScore metric
131
+
132
+ `--alignscore-model`: the name of the backbone model (either 'roberta-base' or 'roberta-large')
133
+
134
+ `--alignscore-ckpt`: the path to the saved checkpoint
135
+
136
+ `--alignscore-eval-mode`: the evaluation mode, defaults to `nli_sp`
137
+
138
+ `--device`: which device to run the metric, defaults to `cuda:0`
139
+
140
+ `--tasks`: which tasks to benchmark, e.g., SummEval, QAGS-CNNDM, ...
141
+
142
+ For the baselines, please see `python benchmark.py --help` for details.