File size: 11,810 Bytes
7b5e67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
########################################################################################################################
# IMPORT #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVITrainer
from singleVis.eval.evaluator import Evaluator
from singleVis.data import NormalDataProvider
# from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
from singleVis.spatial_skeleton_edge_constructor import ProxyBasedSpatialEdgeConstructor
from singleVis.projector import DVIProjector
from singleVis.utils import find_neighbor_preserving_rate
from trustVis.skeleton_generator import CenterSkeletonGenerator
########################################################################################################################
# DVI PARAMETERS #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "DVI" # DeepVisualInsight
########################################################################################################################
# LOAD PARAMETERS #
########################################################################################################################
parser = argparse.ArgumentParser(description='Process hyperparameters...')
# get workspace dir
current_path = os.getcwd()
new_path = os.path.join(current_path, 'training_dynamic')
parser.add_argument('--content_path', type=str,default=new_path)
# parser.add_argument('--start', type=int,default=1)
# parser.add_argument('--end', type=int,default=3)
parser.add_argument('--epoch' ,default=3)
# parser.add_argument('--epoch_end', type=int)
parser.add_argument('--epoch_period', type=int,default=1)
parser.add_argument('--preprocess', type=int,default=0)
parser.add_argument('--base',type=bool,default=False)
args = parser.parse_args()
CONTENT_PATH = args.content_path
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
config = json.load(f)
config = config[VIS_METHOD]
# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
GPU_ID = 0
EPOCH_START = config["EPOCH_START"]
EPOCH_END = config["EPOCH_END"]
EPOCH_PERIOD = config["EPOCH_PERIOD"]
EPOCH_START = args.epoch
EPOCH_END = args.epoch
EPOCH_PERIOD = args.epoch_period
# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = 'proxy' ### saved_as
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
# Define hyperparameters
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
########################################################################################################################
# TRAINING SETTING #
########################################################################################################################
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, epoch_name='Epoch',classes=CLASSES,verbose=1)
PREPROCESS = args.preprocess
if PREPROCESS:
data_provider._meta_data()
if B_N_EPOCHS >0:
data_provider._estimate_boundary(LEN // 10, l_bound=L_BOUND)
# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)
# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=DEVICE)
start_flag = 1
prev_model = VisModel(ENCODER_DIMS, DECODER_DIMS)
for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
# Define DVI Loss
if start_flag:
temporal_loss_fn = DummyTemporalLoss(DEVICE)
criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=0.0,device=DEVICE)
start_flag = 0
else:
# TODO AL mode, redefine train_representation
prev_data = data_provider.train_representation(iteration-EPOCH_PERIOD)
prev_data = prev_data.reshape(prev_data.shape[0],prev_data.shape[1])
curr_data = data_provider.train_representation(iteration)
curr_data = curr_data.reshape(curr_data.shape[0],curr_data.shape[1])
t_1= time.time()
npr = torch.tensor(find_neighbor_preserving_rate(prev_data, curr_data, N_NEIGHBORS)).to(DEVICE)
t_2= time.time()
temporal_loss_fn = TemporalLoss(w_prev, DEVICE)
criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=LAMBDA2*npr,device=DEVICE)
# Define training parameters
optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
# Define Edge dataset
###### generate the skeleton
skeleton_generator = CenterSkeletonGenerator(data_provider,EPOCH_START,1)
# Start timing
start_time = time.time()
## gennerate skeleton
high_bom,_ = skeleton_generator.center_skeleton_genertaion()
end_time = time.time()
elapsed_time = end_time - start_time
print("proxy generation finished ")
t0 = time.time()
##### construct the spitial complex
spatial_cons = ProxyBasedSpatialEdgeConstructor(data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS, net,high_bom)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
print('complex-construct:', t1-t0)
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs> 1e-3 #1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
dataset = DVIDataHandler(edge_to, edge_from, feature_vectors, attention)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chose sampler based on the number of dataset
if len(edge_to) > pow(2,24):
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)
########################################################################################################################
# TRAIN #
########################################################################################################################
trainer = DVITrainer(model, criterion, optimizer, lr_scheduler, edge_loader=edge_loader, DEVICE=DEVICE)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
print('training:', t3-t2)
# save result
save_dir = data_provider.model_path
trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
save_dir = os.path.join(data_provider.model_path, "Epoch_{}".format(iteration))
trainer.save(save_dir=save_dir, file_name="{}".format(VIS_MODEL_NAME))
print("Finish epoch {}...".format(iteration))
prev_model.load_state_dict(model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(prev_model.named_parameters())
########################################################################################################################
# VISUALIZATION #
########################################################################################################################
from singleVis.visualizer import visualizer
now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
vis = visualizer(data_provider, projector, 200, "tab10")
save_dir = os.path.join(data_provider.content_path, "Proxy")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
vis.savefig(i, path=os.path.join(save_dir, "{}_{}_{}_{}.png".format(DATASET, i, VIS_METHOD,now)))
data = data_provider.train_representation(i)
data = data.reshape(data.shape[0],data.shape[1])
##### save embeddings and background for visualization
emb = projector.batch_project(i,data)
np.save(os.path.join(CONTENT_PATH, 'Model', 'Epoch_{}'.format(i), 'embedding.npy'), emb)
vis.get_background(i,200)
# emb = projector.batch_project(data_provider)
########################################################################################################################
# EVALUATION #
########################################################################################################################
# eval_epochs = range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD)
# EVAL_EPOCH_DICT = {
# "mnist":[1,10,15],
# "fmnist":[1,25,50],
# "cifar10":[1,100,199]
# }
# eval_epochs = EVAL_EPOCH_DICT[DATASET]
evaluator = Evaluator(data_provider, projector)
Evaluation_NAME = 'proxy_eval'
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
evaluator.save_epoch_eval(i, 15, temporal_k=5, file_name="{}".format(Evaluation_NAME))
|