File size: 11,775 Bytes
7b5e67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
########################################################################################################################
# IMPORT #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVIALMODITrainer
from singleVis.data import NormalDataProvider
from singleVis.spatial_skeleton_edge_constructor import OriginSingleEpochSpatialEdgeConstructor, PredDistSingleEpochSpatialEdgeConstructor
from singleVis.projector import DVIProjector
from singleVis.eval.evaluator import Evaluator
from singleVis.utils import find_neighbor_preserving_rate
from singleVis.visualizer import visualizer
from trustVis.skeleton_generator import CenterSkeletonGenerator
########################################################################################################################
# PARAMETERS #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "DVI" # DeepVisualInsight
########################################################################################################################
# LOAD PARAMETERS #
########################################################################################################################
parser = argparse.ArgumentParser(description='Process hyperparameters...')
# get workspace dir
current_path = os.getcwd()
new_path = os.path.join(current_path, 'training_dynamic')
parser.add_argument('--content_path', type=str,default=new_path)
parser.add_argument('--base', type=str,default='proxy')
parser.add_argument('--name', type=str,default='trustvis')
parser.add_argument('--start', type=int,default=1)
parser.add_argument('--end', type=int,default=3)
parser.add_argument('--epoch', type=int,default=3)
args = parser.parse_args()
SAVED_NAME = args.name
CONTENT_PATH = args.content_path
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
config = json.load(f)
config = config[VIS_METHOD]
SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
EPOCH_START = args.epoch
EPOCH_END = args.epoch
EPOCH_PERIOD = 1
# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = VISUALIZATION_PARAMETER["VIS_MODEL_NAME"]
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
# Define hyperparameters
GPU_ID = 1
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
########################################################################################################################
# TRAINING SETTING #
########################################################################################################################
BASE_MODEL_NAME = args.base
# PREPROCESS = 1
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, classes=CLASSES, epoch_name='Epoch', verbose=1)
# if PREPROCESS:
# data_provider._meta_data()
# if B_N_EPOCHS >0:
# data_provider._estimate_boundary(LEN//10, l_bound=L_BOUND)
# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)
# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=BASE_MODEL_NAME, device=DEVICE) # vis_model_name 一个初始的dvi
start_flag = 1
prev_model = VisModel(ENCODER_DIMS, DECODER_DIMS)
for iteration in range(EPOCH_START, EPOCH_END+EPOCH_PERIOD, EPOCH_PERIOD):
# Define DVI Loss
if start_flag:
temporal_loss_fn = DummyTemporalLoss(DEVICE)
criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=0.0, device=DEVICE)
start_flag = 0
else:
# TODO AL mode, redefine train_representation
prev_data = data_provider.train_representation(iteration-EPOCH_PERIOD)
curr_data = data_provider.train_representation(iteration)
npr = find_neighbor_preserving_rate(prev_data, curr_data, N_NEIGHBORS)
temporal_loss_fn = TemporalLoss(w_prev, DEVICE)
criterion = DVILoss(umap_loss_fn, recon_loss_fn, temporal_loss_fn, lambd1=LAMBDA1, lambd2=torch.from_numpy(LAMBDA2*npr), device=DEVICE)
vis = visualizer(data_provider, projector, 200, "tab10")
grid_high, grid_emd ,border = vis.get_epoch_decision_view(iteration,400,None, True)
train_data_embedding = projector.batch_project(iteration, data_provider.train_representation(iteration))
from sklearn.neighbors import NearestNeighbors
import numpy as np
# 假设 train_data_embedding 和 grid_emd 都是 numpy arrays,每一行都是一个点
threshold = 5 # hyper-peremeter
# use train_data_embedding initialize NearestNeighbors
nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(train_data_embedding)
# for each grid_emd,find train_data_embedding nearest sample
distances, indices = nbrs.kneighbors(grid_emd)
# filter by distance
mask = distances.ravel() < threshold
selected_indices = np.arange(grid_emd.shape[0])[mask]
grid_high_mask = grid_high[selected_indices]
skeleton_generator = CenterSkeletonGenerator(data_provider,iteration,0.5,500)
high_bom, high_rad = skeleton_generator.center_skeleton_genertaion()
print("number",len(high_bom))
# Define training parameters
optimizer = torch.optim.Adam(model.parameters(), lr=.01, weight_decay=1e-5)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=.1)
# Define Edge dataset
t0 = time.time()
spatial_cons = OriginSingleEpochSpatialEdgeConstructor(data_provider, iteration, S_N_EPOCHS, B_N_EPOCHS, N_NEIGHBORS)
edge_to, edge_from, probs, feature_vectors, attention = spatial_cons.construct()
t1 = time.time()
probs = probs / (probs.max()+1e-3)
eliminate_zeros = probs> 1e-3 #1e-3
edge_to = edge_to[eliminate_zeros]
edge_from = edge_from[eliminate_zeros]
probs = probs[eliminate_zeros]
dataset = DVIDataHandler(edge_to, edge_from, feature_vectors, attention)
n_samples = int(np.sum(S_N_EPOCHS * probs) // 1)
# chose sampler based on the number of dataset
if len(edge_to) > pow(2,24):
sampler = CustomWeightedRandomSampler(probs, n_samples, replacement=True)
else:
sampler = WeightedRandomSampler(probs, n_samples, replacement=True)
edge_loader = DataLoader(dataset, batch_size=2000, sampler=sampler, num_workers=8, prefetch_factor=10)
########################################################################################################################
# TRAIN #
########################################################################################################################
file_path = os.path.join(data_provider.content_path, "Model", "Epoch_{}".format(iteration), "{}.pth".format(BASE_MODEL_NAME))
save_model = torch.load(file_path, map_location="cpu")
model.load_state_dict(save_model["state_dict"])
trainer = DVIALMODITrainer(model, criterion, optimizer, lr_scheduler, edge_loader=edge_loader, DEVICE=DEVICE, grid_high_mask=grid_high_mask, high_bom=high_bom, high_rad=high_rad, iteration=iteration, data_provider=data_provider, prev_model=prev_model, S_N_EPOCHS=S_N_EPOCHS, B_N_EPOCHS=B_N_EPOCHS, N_NEIGHBORS=N_NEIGHBORS)
t2=time.time()
trainer.train(PATIENT, MAX_EPOCH)
t3 = time.time()
# save result
save_dir = data_provider.model_path
trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "complex_construction", str(iteration), t1-t0)
trainer.record_time(save_dir, "time_{}".format(VIS_MODEL_NAME), "training", str(iteration), t3-t2)
save_dir = os.path.join(data_provider.model_path, "Epoch_{}".format(iteration))
trainer.save(save_dir=save_dir, file_name="{}".format(SAVED_NAME))
print("Finish epoch {}...".format(iteration))
prev_model.load_state_dict(model.state_dict())
for param in prev_model.parameters():
param.requires_grad = False
w_prev = dict(prev_model.named_parameters())
print('aaacccllll runtime', t3-t0)
########################################################################################################################
# VISUALIZATION #
########################################################################################################################
from singleVis.visualizer import visualizer
vis = visualizer(data_provider, projector, 200, "tab10")
save_dir = os.path.join(data_provider.content_path, "Trust_al")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
vis.savefig(i, path=os.path.join(save_dir, "{}_{}_{}.png".format(VIS_MODEL_NAME, i, VIS_METHOD)))
########################################################################################################################
# EVALUATION #
########################################################################################################################
evaluator = Evaluator(data_provider, projector)
Evaluation_NAME = 'trustvis_al_eval'
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
evaluator.save_epoch_eval(i, 15, temporal_k=5, file_name="{}".format(Evaluation_NAME)) |