File size: 1,668 Bytes
c18d426
 
 
 
 
 
 
 
 
8309e0f
c18d426
fc7d9cf
c18d426
 
 
 
 
 
fc7d9cf
c18d426
 
 
765c76a
c18d426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4983462
fc7d9cf
c18d426
4983462
 
c18d426
 
bd19250
765c76a
c18d426
 
 
 
9636ce8
 
 
 
765c76a
c18d426
 
 
 
bd19250
8309e0f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
language:
- nan
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
base_model: openai/whisper-small
model-index:
- name: Whisper small Taiwanese - LoRA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper small Taiwanese - LoRA

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9023

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.9794        | 1.0   | 2500  | 1.0233          |
| 0.7059        | 3.0   | 7500  | 0.8989          |
| 0.5047        | 5.0   | 12500 | 0.9023          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2