File size: 10,019 Bytes
a664a45
 
 
1e50af8
a664a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import torch.nn as nn

from layers import DownsamplingBlock, UpsamplingBlock

class UnetEncoder(nn.Module):
    """Create the Unet Encoder Network.
    
    C64-C128-C256-C512-C512-C512-C512-C512
    """
    def __init__(self, c_in=3, c_out=512):
        """
        Constructs the Unet Encoder Network.

        Ck denote a Convolution-BatchNorm-ReLU layer with k filters.
            C64-C128-C256-C512-C512-C512-C512-C512
        Args:
            c_in (int, optional): Number of input channels.
            c_out (int, optional): Number of output channels. Default is 512.
        """
        super(UnetEncoder, self).__init__()
        self.enc1 = DownsamplingBlock(c_in, 64, use_norm=False) # C64
        self.enc2 = DownsamplingBlock(64, 128) # C128
        self.enc3 = DownsamplingBlock(128, 256) # C256
        self.enc4 = DownsamplingBlock(256, 512) # C512
        self.enc5 = DownsamplingBlock(512, 512) # C512
        self.enc6 = DownsamplingBlock(512, 512) # C512
        self.enc7 = DownsamplingBlock(512, 512) # C512
        self.enc8 = DownsamplingBlock(512, c_out) # C512

    def forward(self, x):
        x1 = self.enc1(x)
        x2 = self.enc2(x1)
        x3 = self.enc3(x2)
        x4 = self.enc4(x3)
        x5 = self.enc5(x4)
        x6 = self.enc6(x5)
        x7 = self.enc7(x6)
        x8 = self.enc8(x7)
        out = [x8, x7, x6, x5, x4, x3, x2, x1] # latest activation is the first element
        return out
    

class UnetDecoder(nn.Module):
    """Creates the Unet Decoder Network.
    """
    def __init__(self, c_in=512, c_out=64, use_upsampling=False, mode='nearest'):
        """
        Constructs the Unet Decoder Network.

        Ck denote a Convolution-BatchNorm-ReLU layer with k filters.
        
        CDk denotes a Convolution-BatchNorm-Dropout-ReLU layer with a dropout rate of 50%.
            CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128
        Args:
            c_in (int): Number of input channels.
            c_out (int, optional): Number of output channels. Default is 512.
            use_upsampling (bool, optional): Upsampling method for decoder. 
                If True, use upsampling layer followed regular convolution layer.
                If False, use transpose convolution. Default is False
            mode (str, optional): the upsampling algorithm: one of 'nearest', 
                'bilinear', 'bicubic'. Default: 'nearest'
        """
        super(UnetDecoder, self).__init__()
        self.dec1 = UpsamplingBlock(c_in, 512, use_dropout=True, use_upsampling=use_upsampling, mode=mode) # CD512
        self.dec2 = UpsamplingBlock(1024, 512, use_dropout=True, use_upsampling=use_upsampling, mode=mode) # CD1024
        self.dec3 = UpsamplingBlock(1024, 512, use_dropout=True, use_upsampling=use_upsampling, mode=mode) # CD1024
        self.dec4 = UpsamplingBlock(1024, 512, use_upsampling=use_upsampling, mode=mode) # C1024
        self.dec5 = UpsamplingBlock(1024, 256, use_upsampling=use_upsampling, mode=mode) # C1024
        self.dec6 = UpsamplingBlock(512, 128, use_upsampling=use_upsampling, mode=mode) # C512
        self.dec7 = UpsamplingBlock(256, 64, use_upsampling=use_upsampling, mode=mode) # C256
        self.dec8 = UpsamplingBlock(128, c_out, use_upsampling=use_upsampling, mode=mode) # C128
    

    def forward(self, x):
        x9 = torch.cat([x[1], self.dec1(x[0])], 1) # (N,1024,H,W)
        x10 = torch.cat([x[2], self.dec2(x9)], 1) # (N,1024,H,W)
        x11 = torch.cat([x[3], self.dec3(x10)], 1) # (N,1024,H,W)
        x12 = torch.cat([x[4], self.dec4(x11)], 1) # (N,1024,H,W)
        x13 = torch.cat([x[5], self.dec5(x12)], 1) # (N,512,H,W)
        x14 = torch.cat([x[6], self.dec6(x13)], 1) # (N,256,H,W)
        x15 = torch.cat([x[7], self.dec7(x14)], 1) # (N,128,H,W)
        out = self.dec8(x15) # (N,64,H,W)
        return out
    

class UnetGenerator(nn.Module):
    """Create a Unet-based generator"""
    def __init__(self, c_in=3, c_out=3, use_upsampling=False, mode='nearest'):
        """
        Constructs a Unet generator
        Args:
            c_in (int): The number of input channels.
            c_out (int): The number of output channels.
            use_upsampling (bool, optional): Upsampling method for decoder. 
                If True, use upsampling layer followed regular convolution layer.
                If False, use transpose convolution. Default is False
            mode (str, optional): the upsampling algorithm: one of 'nearest', 
                'bilinear', 'bicubic'. Default: 'nearest'
        """
        super(UnetGenerator, self).__init__()
        self.encoder = UnetEncoder(c_in=c_in)
        self.decoder = UnetDecoder(use_upsampling=use_upsampling, mode=mode)
        # In the paper, the authors state:
        #   """
        #       After the last layer in the decoder, a convolution is applied
        #       to map to the number of output channels (3 in general, except
        #       in colorization, where it is 2), followed by a Tanh function.
        #   """
        # However, in the official Lua implementation, only a Tanh layer is applied.
        # Therefore, I took the liberty of adding a convolutional layer with a 
        # kernel size of 3.
        # For more information please check the paper and official github repo:
        # https://github.com/phillipi/pix2pix
        # https://arxiv.org/abs/1611.07004
        self.head = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=c_out,
                      kernel_size=3, stride=1, padding=1,
                      bias=True
                      ), 
            nn.Tanh()
            )
    
    def forward(self, x):
        outE = self.encoder(x)
        outD = self.decoder(outE)
        out = self.head(outD)
        return out


class PatchDiscriminator(nn.Module):
    """Create a PatchGAN discriminator"""
    def __init__(self, c_in=3, c_hid=64, n_layers=3):
        """Constructs a PatchGAN discriminator

        Args:
            c_in (int, optional): The number of input channels. Defaults to 3.
            c_hid (int, optional): The number of channels after first conv layer.
                Defaults to 64.
            n_layers (int, optional): the number of convolution blocks in the 
                discriminator. Defaults to 3.
        """
        super(PatchDiscriminator, self).__init__()
        model = [DownsamplingBlock(c_in, c_hid, use_norm=False)]

        n_p = 1  # multiplier for previous channel
        n_c = 1  # multiplier for current channel
        # last block is with stride of 1, therefore iterate (n_layers-1) times
        for n in range(1, n_layers): 
            n_p = n_c
            n_c = min(2**n, 8)  # The number of channels is 512 at most

            model += [DownsamplingBlock(c_hid*n_p, c_hid*n_c)]
        
        n_p = n_c
        n_c = min(2**n_layers, 8)
        model += [DownsamplingBlock(c_hid*n_p, c_hid*n_c, stride=1)] # last block is with stride of 1

        # last layer is a convolution followed by a Sigmoid function.
        model += [nn.Conv2d(in_channels=c_hid*n_c, out_channels=1, 
                            kernel_size=4, stride=1, padding=1, bias=True
                            )] 
        # Normally, there should be a sigmoid layer at the end of discriminator.
        # However, nn.BCEWithLogitsLoss combines the sigmoid layer with BCE loss, 
        # providing greater numerical stability. Therefore, the discriminator outputs
        # logits to take advantage of this stability.
        self.model = nn.Sequential(*model)

    def forward(self, x):
        return self.model(x)
    

class PixelDiscriminator(nn.Module):
    """Create a PixelGAN discriminator (1x1 PatchGAN discriminator)"""
    def __init__(self, c_in=3, c_hid=64):
        """Constructs a PixelGAN discriminator, a special form of PatchGAN Discriminator.
        All convolutions are 1x1 spatial filters

        Args:
            c_in (int, optional): The number of input channels. Defaults to 3.
            c_hid (int, optional): The number of channels after first conv layer.
                Defaults to 64.
        """
        super(PixelDiscriminator, self).__init__()
        self.model = nn.Sequential(
            DownsamplingBlock(c_in, c_hid, kernel_size=1, stride=1, padding=0, use_norm=False),
            DownsamplingBlock(c_hid, c_hid*2, kernel_size=1, stride=1, padding=0),
            nn.Conv2d(in_channels=c_hid*2, out_channels=1, kernel_size=1)
            )
        # Similar to PatchDiscriminator, there should be a sigmoid layer at the end of discriminator.
        # However, nn.BCEWithLogitsLoss combines the sigmoid layer with BCE loss, 
        # providing greater numerical stability. Therefore, the discriminator outputs
        # logits to take advantage of this stability.

    def forward(self, x):
        return self.model(x)
    

class PatchGAN(nn.Module):
    """Create a PatchGAN discriminator"""
    def __init__(self, c_in=3, c_hid=64, mode='patch', n_layers=3):
        """Constructs a PatchGAN discriminator.

        Args:
            c_in (int, optional): The number of input channels. Defaults to 3.
            c_hid (int, optional): The number of channels after first 
                convolutional layer. Defaults to 64.
            mode (str, optional): PatchGAN type. Use 'pixel' for PixelGAN, and 
                'patch' for other types. Defaults to 'patch'.
            n_layers (int, optional): PatchGAN number of layers. Defaults to 3.
                - 16x16 PatchGAN if n=1
                - 34x34 PatchGAN if n=2
                - 70x70 PatchGAN if n=3
                - 142x142 PatchGAN if n=4
                - 286x286 PatchGAN if n=5
                - 574x574 PatchGAN if n=6
        """
        super(PatchGAN, self).__init__()
        if mode == 'pixel':
            self.model = PixelDiscriminator(c_in, c_hid)
        else:
            self.model = PatchDiscriminator(c_in, c_hid, n_layers)
    
    def forward(self, x):
        return self.model(x)