File size: 14,722 Bytes
ae1e87a 97d71da ae1e87a 97d71da ae1e87a 97d71da ae1e87a 97d71da ae1e87a 97d71da ae1e87a 97d71da ae1e87a 97d71da ae1e87a 97d71da ae1e87a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c1caf2c20>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c1caf2cb0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c1caf2d40>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c1caf2dd0>",
"_build": "<function ActorCriticPolicy._build at 0x7f7c1caf2e60>",
"forward": "<function ActorCriticPolicy.forward at 0x7f7c1caf2ef0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c1caf2f80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f7c1caf9050>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c1caf90e0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c1caf9170>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c1caf9200>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f7c1cad0060>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651862303.1855774,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYWYT7PqaU/ECENP/83Ar9BwZ8+u9NNPgAAAAAAAAAAM+bAPPaQZrr99dk6s7SfNBFj67oQ6fy5AACAPwAAgD+A8AA9Cp1quzar17pUQ4U8DKSpPPIWZb0AAIA/AACAP7PNmL0Fuhw/OXbEPd5lnr5NQS69ULXYvAAAAAAAAAAAACIwvKyDez6onW0+vRuXvlSd7T0GlCe8AAAAAAAAAACaMdQ8j54sulZlWzpTC1Q1dlm1upjXf7kAAIA/AACAP3Pfxz0olb8+go33vcSLpr45GPe7U7dyvQAAAAAAAAAAQF6XPSkIeLo7+N86KpZMNrMq1joQOgC6AACAPwAAgD/m/BG9oflpPn6xwD0vVo6+GNkYPb74vzwAAAAAAAAAAJqKOT0fbZm5SNSNu13hkbbE/k66pzqmOgAAgD8AAIA/s20/vu2eWz9HH8E9AyykvnEBEL6E3r49AAAAAAAAAAAA1e+8hbPQuZhd6zhA7wE0GZSOuvPeCrgAAIA/AACAPwAuYrwpdGy6simyubEWILYiOcK78n/POAAAgD8AAIA/zSTePFgGsj/DfG8+celavkXAPjwiZoo9AAAAAAAAAACamdy7FDa0P5iRLr8vdQm+fNf/O3ErHj4AAAAAAAAAAM1UdTx7ooW6s8QnOGCnSjMfWsY6qR9CtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYyXmWcnzY0CUhpRSlIwBbJRN6AOMAXSUR0CzNME29+PSdX2UKGgGaAloD0MI/DbEeE1PY0CUhpRSlGgVTegDaBZHQLM06ZX+2mZ1fZQoaAZoCWgPQwhUw35PrIxjQJSGlFKUaBVN6ANoFkdAszUi9i+cpnV9lChoBmgJaA9DCMQFoFE6cmNAlIaUUpRoFU3oA2gWR0CzNTKKP4mDdX2UKGgGaAloD0MItf6WAHxbZECUhpRSlGgVTegDaBZHQLM17u1WsBB1fZQoaAZoCWgPQwgGvTeGAIxuQJSGlFKUaBVN6wFoFkdAszfr1YhdMXV9lChoBmgJaA9DCHL5D+m3hV1AlIaUUpRoFU3oA2gWR0CzOb60QbuMdX2UKGgGaAloD0MIDRe5pyvXYUCUhpRSlGgVTegDaBZHQLM7ZXvH93t1fZQoaAZoCWgPQwhRSghWVcBjQJSGlFKUaBVN6ANoFkdAszzhhLGrCHV9lChoBmgJaA9DCMgljjwQcURAlIaUUpRoFUvCaBZHQLM9bK4x1xN1fZQoaAZoCWgPQwgcfjfdsnhkQJSGlFKUaBVN6ANoFkdAsz+2VTrE+HV9lChoBmgJaA9DCMy4qYFm6mBAlIaUUpRoFU3oA2gWR0CzQbWJaaCudX2UKGgGaAloD0MIzaylgDT7YUCUhpRSlGgVTegDaBZHQLNDB0hePaN1fZQoaAZoCWgPQwhfKcsQR8tiQJSGlFKUaBVN6ANoFkdAs0Mnl5nlGXV9lChoBmgJaA9DCJ4Hd2dte2hAlIaUUpRoFU3oA2gWR0CzTbb349HMdX2UKGgGaAloD0MI/82LE9+PZ0CUhpRSlGgVTegDaBZHQLNOT23KB/Z1fZQoaAZoCWgPQwjUgEHSp+ZiQJSGlFKUaBVN6ANoFkdAs08D2rXDnHV9lChoBmgJaA9DCAgCZOjYrGJAlIaUUpRoFU3oA2gWR0CzT2X3+MqCdX2UKGgGaAloD0MIIuF7f4PbXkCUhpRSlGgVTegDaBZHQLNPiWDHwPR1fZQoaAZoCWgPQwip2JjXEVVgQJSGlFKUaBVN6ANoFkdAs0+5NqQA/HV9lChoBmgJaA9DCM6MfjSc02BAlIaUUpRoFU3oA2gWR0CzT8ZAQg9vdX2UKGgGaAloD0MIineAJy1SZUCUhpRSlGgVTegDaBZHQLNQaNXYDkl1fZQoaAZoCWgPQwiPN/ktur9iQJSGlFKUaBVN6ANoFkdAs1IxehPCVXV9lChoBmgJaA9DCGed8X3x7mJAlIaUUpRoFU3oA2gWR0CzVXKSgXdkdX2UKGgGaAloD0MIICkiw6oeYECUhpRSlGgVTegDaBZHQLNW4vvBrN51fZQoaAZoCWgPQwgBvXDnQn9jQJSGlFKUaBVN6ANoFkdAs1dveSB9TnV9lChoBmgJaA9DCGYRiq2gB2ZAlIaUUpRoFU3oA2gWR0CzWawfU4JedX2UKGgGaAloD0MIlX7C2a1YZkCUhpRSlGgVTegDaBZHQLNbh336AOJ1fZQoaAZoCWgPQwhSRfEqa61iQJSGlFKUaBVN6ANoFkdAs1y0JY1YQ3V9lChoBmgJaA9DCMbCEDl9+GJAlIaUUpRoFU3oA2gWR0CzXNCd8RcvdX2UKGgGaAloD0MIx0rMsxLAcECUhpRSlGgVTXkBaBZHQLNdmfA9FF51fZQoaAZoCWgPQwjdYROZuY1mQJSGlFKUaBVN6ANoFkdAs13I+lj3EnV9lChoBmgJaA9DCM7BM6HJc2BAlIaUUpRoFU3oA2gWR0CzZ6nCoCMhdX2UKGgGaAloD0MIRx0dVyOoYUCUhpRSlGgVTegDaBZHQLNoRrqdH2B1fZQoaAZoCWgPQwj2YFJ8fJ9nQJSGlFKUaBVN6ANoFkdAs2ihBLPD53V9lChoBmgJaA9DCIRkARM48WRAlIaUUpRoFU3oA2gWR0CzaMQr6LwXdX2UKGgGaAloD0MIADrMlxcRaECUhpRSlGgVTegDaBZHQLNo9E3sHB11fZQoaAZoCWgPQwjAIypUNwFkQJSGlFKUaBVN6ANoFkdAs2kByWAwwnV9lChoBmgJaA9DCEmCcAUU419AlIaUUpRoFU3oA2gWR0Czaa5hKDkEdX2UKGgGaAloD0MIgSVXsXgJYkCUhpRSlGgVTegDaBZHQLNrkITXarZ1fZQoaAZoCWgPQwj5aHHGsJZnQJSGlFKUaBVN6ANoFkdAs28alANXo3V9lChoBmgJaA9DCI4HW+x2tGNAlIaUUpRoFU3oA2gWR0CzcK1vVEuydX2UKGgGaAloD0MISwFp/4OFYUCUhpRSlGgVTegDaBZHQLNzxp9qk/N1fZQoaAZoCWgPQwjlmZfDbiJjQJSGlFKUaBVN6ANoFkdAs3Xvuy/sV3V9lChoBmgJaA9DCNV2E3zT5WVAlIaUUpRoFU3oA2gWR0Czd1fCEYfodX2UKGgGaAloD0MI3SbcK3PJYkCUhpRSlGgVTegDaBZHQLN3fFJxvNx1fZQoaAZoCWgPQwg/br98MqhmQJSGlFKUaBVN6ANoFkdAs3hhlEqlQHV9lChoBmgJaA9DCMehfhe29GRAlIaUUpRoFU3oA2gWR0CzeJdNrTH9dX2UKGgGaAloD0MIRDNPrqnqZUCUhpRSlGgVTegDaBZHQLN5LhIe5nV1fZQoaAZoCWgPQwgfuTXpNrlhQJSGlFKUaBVN6ANoFkdAs4NRHEuQIXV9lChoBmgJaA9DCOSHSiNmmGdAlIaUUpRoFU3oA2gWR0Czg7sJUo8ZdX2UKGgGaAloD0MIs5dtpy3hYkCUhpRSlGgVTegDaBZHQLOD4UxmCiB1fZQoaAZoCWgPQwjq6/maZYVjQJSGlFKUaBVN6ANoFkdAs4QUfs/puHV9lChoBmgJaA9DCLWpuke2g2JAlIaUUpRoFU3oA2gWR0CzhCK33HrAdX2UKGgGaAloD0MIzJiCNc71aECUhpRSlGgVTegDaBZHQLOE3dLQHA11fZQoaAZoCWgPQwi/1qVGaB5lQJSGlFKUaBVN6ANoFkdAs4bT9ycTanV9lChoBmgJaA9DCPRuLCiM7GdAlIaUUpRoFU3oA2gWR0CzihplFtsOdX2UKGgGaAloD0MIGCR9WsXmYUCUhpRSlGgVTegDaBZHQLOLhyckMTh1fZQoaAZoCWgPQwiM9nghHWhdQJSGlFKUaBVN6ANoFkdAs45gomXw9nV9lChoBmgJaA9DCCwpd59j2GJAlIaUUpRoFU3oA2gWR0CzkFR9Cu2adX2UKGgGaAloD0MIICqNmFmqYkCUhpRSlGgVTegDaBZHQLORlVRDTjN1fZQoaAZoCWgPQwhNEkvK3WlhQJSGlFKUaBVN6ANoFkdAs5GziWE9MnV9lChoBmgJaA9DCIBIv30dwWhAlIaUUpRoFU3oA2gWR0Czkov6fra/dX2UKGgGaAloD0MIldV0PdEDY0CUhpRSlGgVTegDaBZHQLOSvAhStNl1fZQoaAZoCWgPQwhKmGn717hgQJSGlFKUaBVN6ANoFkdAs5NKEug6EXV9lChoBmgJaA9DCL4Ts14MGWZAlIaUUpRoFU3oA2gWR0CznTrWRRuTdX2UKGgGaAloD0MIXTelvNZLY0CUhpRSlGgVTegDaBZHQLOdmVeruIB1fZQoaAZoCWgPQwh/T6xTZcNgQJSGlFKUaBVN6ANoFkdAs5270Dlo13V9lChoBmgJaA9DCANbJVicBGVAlIaUUpRoFU3oA2gWR0CznepiI+GHdX2UKGgGaAloD0MIDDz3Hi63ZUCUhpRSlGgVTegDaBZHQLOd98baRIV1fZQoaAZoCWgPQwiuK2aEd8xxQJSGlFKUaBVNigJoFkdAs54vZZjhDXV9lChoBmgJaA9DCF37AnrhIWhAlIaUUpRoFU3oA2gWR0Cznp+yZ8a5dX2UKGgGaAloD0MIaD7nbtefaUCUhpRSlGgVTegDaBZHQLOgYrpaA4J1fZQoaAZoCWgPQwhJvDydK4tmQJSGlFKUaBVN6ANoFkdAs6VL4ubqhXV9lChoBmgJaA9DCK8nui58zWRAlIaUUpRoFU3oA2gWR0CzqJLCN0eVdX2UKGgGaAloD0MISfQyimXyZUCUhpRSlGgVTegDaBZHQLOq4pV0cOt1fZQoaAZoCWgPQwg4hZUKqpVjQJSGlFKUaBVN6ANoFkdAs6xeVX3g1nV9lChoBmgJaA9DCEdxjjq6XWdAlIaUUpRoFU3oA2gWR0CzrIFd1MdtdX2UKGgGaAloD0MIklhS7j7HZkCUhpRSlGgVTegDaBZHQLOtc5ULlV91fZQoaAZoCWgPQwgNx/MZ0GtiQJSGlFKUaBVN6ANoFkdAs62r/p+tsHV9lChoBmgJaA9DCNvdA3RfFmhAlIaUUpRoFU3oA2gWR0CzrkZ/gBLgdX2UKGgGaAloD0MIeT2YFJ+fYUCUhpRSlGgVTegDaBZHQLOu/xSYPXl1fZQoaAZoCWgPQwhaZDvfTxNlQJSGlFKUaBVN6ANoFkdAs7jZZmqYJHV9lChoBmgJaA9DCNXNxd92PWhAlIaUUpRoFU3oA2gWR0CzuQF98Z1ndX2UKGgGaAloD0MIk5BI23inY0CUhpRSlGgVTegDaBZHQLO5NjOLR8d1fZQoaAZoCWgPQwhag/dVObloQJSGlFKUaBVN6ANoFkdAs7lE+9rXUnV9lChoBmgJaA9DCBJNoIhFGF9AlIaUUpRoFU3oA2gWR0CzuYOtr9EUdX2UKGgGaAloD0MIAoOkTyueY0CUhpRSlGgVTegDaBZHQLO6AmI0qH51fZQoaAZoCWgPQwiZ8Ev9PKtkQJSGlFKUaBVN6ANoFkdAs7v1mapgkXV9lChoBmgJaA9DCGvvU1VoymFAlIaUUpRoFU3oA2gWR0CzwUCdz4lAdX2UKGgGaAloD0MINuSfGUTnZUCUhpRSlGgVTegDaBZHQLPEkGBnSOR1fZQoaAZoCWgPQwhsfCb7Z2JnQJSGlFKUaBVN6ANoFkdAs8a+1G9YfXV9lChoBmgJaA9DCGqGVFG8VWZAlIaUUpRoFU3oA2gWR0CzyBn/YJ3QdX2UKGgGaAloD0MIv7uVJbq3YUCUhpRSlGgVTegDaBZHQLPIO3YL9dh1fZQoaAZoCWgPQwgfgxWn2lFjQJSGlFKUaBVN6ANoFkdAs8kZavA443V9lChoBmgJaA9DCPhtiPEavWRAlIaUUpRoFU3oA2gWR0CzyU0b1h9cdX2UKGgGaAloD0MIFM0DWOR6ZkCUhpRSlGgVTegDaBZHQLPJ2fT1CgN1fZQoaAZoCWgPQwiinGhXoZhnQJSGlFKUaBVN6ANoFkdAs8qA5bQkX3V9lChoBmgJaA9DCIqtoGkJSGRAlIaUUpRoFU3oA2gWR0CzyuRUJfICdX2UKGgGaAloD0MIiWAcXDruYUCUhpRSlGgVTegDaBZHQLPLCrWy1NR1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"n_steps": 1024,
"gamma": 0.9999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 5,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |