Adapters
Turkish
File size: 4,804 Bytes
5d73fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import tensorflow as tf
import model
from dataset import get_dataset, preprocess_sentence


def inference(hparams, chatbot, tokenizer, sentence):
    sentence = preprocess_sentence(sentence)

    sentence = tf.expand_dims(
        hparams.start_token + tokenizer.encode(sentence) + hparams.end_token, axis=0
    )

    output = tf.expand_dims(hparams.start_token, 0)

    for _ in range(hparams.max_length):
        predictions = chatbot(inputs=[sentence, output], training=False)

        predictions = predictions[:, -1:, :]
        predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)

        if tf.equal(predicted_id, hparams.end_token[0]):
            break

        output = tf.concat([output, predicted_id], axis=-1)

    return tf.squeeze(output, axis=0)


def predict(hparams, chatbot, tokenizer, sentence):
    prediction = inference(hparams, chatbot, tokenizer, sentence)
    predicted_sentence = tokenizer.decode(
        [i for i in prediction if i < tokenizer.vocab_size]
    )
    return predicted_sentence

def read_file(file_path):
    with open(file_path, 'r', encoding='utf-8') as file:
        lines = file.readlines()
    return lines

def append_to_file(file_path, line):
    with open(file_path, 'a', encoding='utf-8') as file:
        file.write(f"{line}\n")
        
def get_last_ids(lines_file, conversations_file):
    lines = read_file(lines_file)
    conversations = read_file(conversations_file)

    last_line = lines[-1]
    last_conversation = conversations[-1]

    last_line_id = int(last_line.split(" +++$+++ ")[0][1:])
    last_user_id = int(last_conversation.split(" +++$+++ ")[1][1:])
    last_movie_id = int(last_conversation.split(" +++$+++ ")[2][1:])

    return last_line_id, last_user_id, last_movie_id

def update_data_files(user_input, bot_response, lines_file='data/lines.txt', conversations_file='data/conversations.txt'):
    last_line_id, last_user_id, last_movie_id = get_last_ids(lines_file, conversations_file)

    new_line_id = f"L{last_line_id + 1}"
    new_bot_line_id = f"L{last_line_id + 2}"
    new_user_id = f"u{last_user_id + 1}"
    new_bot_user_id = f"u{last_user_id + 2}"
    new_movie_id = f"m{last_movie_id + 1}"

    append_to_file(lines_file, f"{new_line_id} +++$+++ {new_user_id} +++$+++ {new_movie_id} +++$+++ Ben +++$+++ {user_input}")
    append_to_file(lines_file, f"{new_bot_line_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ Bot +++$+++ {bot_response}")

    new_conversation = f"{new_user_id} +++$+++ {new_bot_user_id} +++$+++ {new_movie_id} +++$+++ ['{new_line_id}', '{new_bot_line_id}']"
    append_to_file(conversations_file, new_conversation)

def get_feedback():
    feedback = input("Bu cevap yardımcı oldu mu? (Evet/Hayır):  ").lower()
    return feedback == "Evet"

def chat(hparams, chatbot, tokenizer):
    print("\nCHATBOT")

    for _ in range(5):
        sentence = input("Sen: ")
        output = predict(hparams, chatbot, tokenizer, sentence)
        print(f"\nBOT: {output}")
        
        
        user_input = sentence
        bot_response = output
        
        feedback = get_feedback()
        
        if feedback:
            update_data_files(user_input, bot_response)
        else:
            pass
        
        
def main(hparams):
    
    _, token = get_dataset(hparams)
    
    tf.keras.backend.clear_session()
    chatbot = tf.keras.models.load_model(
        hparams.save_model,
        custom_objects={
            "PositionalEncoding": model.PositionalEncoding,
            "MultiHeadAttention": model.MultiHeadAttention,
        },
        compile=False,
    )
    
    
    chat(hparams, chatbot, token)
    
    
if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--save_model", default="model.h5", type=str, help="path save the model"
    )
    parser.add_argument(
        "--max_samples",
        default=25000,
        type=int,
        help="maximum number of conversation pairs to use",
    )
    parser.add_argument(
        "--max_length", default=40, type=int, help="maximum sentence length"
    )
    parser.add_argument("--batch_size", default=64, type=int)
    parser.add_argument("--num_layers", default=2, type=int)
    parser.add_argument("--num_units", default=512, type=int)
    parser.add_argument("--d_model", default=256, type=int)
    parser.add_argument("--num_heads", default=8, type=int)
    parser.add_argument("--dropout", default=0.1, type=float)
    parser.add_argument("--activation", default="relu", type=str)
    parser.add_argument("--epochs", default=80, type=int)
    
    main(parser.parse_args())