|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This model is randomly initialized, using the config from [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) but with smaller size. |
|
|
|
Codes: |
|
|
|
```python |
|
import transformers |
|
import torch |
|
import os |
|
from huggingface_hub import create_repo, upload_folder |
|
import accelerate |
|
|
|
source_model_id = 'THUDM/glm-4-9b-chat' |
|
save_path = '/tmp/yujiepan/glm-4-tiny-random' |
|
repo_id = 'yujiepan/glm-4-tiny-random' |
|
|
|
os.system(f'rm -rf {save_path}') |
|
|
|
config = transformers.AutoConfig.from_pretrained( |
|
source_model_id, |
|
trust_remote_code=True, |
|
) |
|
config._name_or_path = source_model_id |
|
config.hidden_size = 8 |
|
config.ffn_hidden_size = 16 |
|
config.kv_channels = 2 |
|
config.num_attention_heads = 4 |
|
config.multi_query_group_num = 2 |
|
config.num_hidden_layers = 2 |
|
config.num_layers = 2 |
|
|
|
model = transformers.AutoModelForCausalLM.from_config( |
|
config, |
|
trust_remote_code=True, |
|
) |
|
model.generation_config = transformers.GenerationConfig.from_pretrained(source_model_id) |
|
model = model.to(torch.bfloat16) |
|
|
|
with torch.no_grad(): |
|
for p in model.parameters(): |
|
torch.nn.init.normal_(p) |
|
|
|
model.save_pretrained(save_path) |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
source_model_id, |
|
trust_remote_code=True, |
|
) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
output = model.float().generate(torch.tensor([[1, 2, 3]]).long(), max_length=16, do_sample=True) |
|
|
|
os.system(f'ls -alh {save_path}') |
|
# os.system(f'rm -rf {save_path}/model.safetensors') |
|
create_repo(repo_id, exist_ok=True) |
|
upload_folder(repo_id=repo_id, folder_path=save_path) |
|
``` |