File size: 2,209 Bytes
5703fdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- ncbi_disease
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: 2023MLMA_LAB9_task2
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ncbi_disease
type: ncbi_disease
config: ncbi_disease
split: validation
args: ncbi_disease
metrics:
- name: Precision
type: precision
value: 0.48903878583473864
- name: Recall
type: recall
value: 0.5598455598455598
- name: F1
type: f1
value: 0.522052205220522
- name: Accuracy
type: accuracy
value: 0.9536349138434012
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 2023MLMA_LAB9_task2
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1611
- Precision: 0.4890
- Recall: 0.5598
- F1: 0.5221
- Accuracy: 0.9536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3326 | 1.0 | 679 | 0.1749 | 0.4099 | 0.4546 | 0.4311 | 0.9449 |
| 0.175 | 2.0 | 1358 | 0.1616 | 0.4562 | 0.5125 | 0.4827 | 0.9511 |
| 0.1082 | 3.0 | 2037 | 0.1611 | 0.4890 | 0.5598 | 0.5221 | 0.9536 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|